Math 520

Volume: More Disc Method §6.2

A solid of revolution is an object obtained by rotating planar region about a line. Usually this line is the x-axis, y-axis, or some other line. Sometimes the resulting figure will have a cross section in the shape of a disk. The volume will be approximated by a sum of volumes of disks which suggest the definite integral.

Volume by Disc Method

If the region under $y=f(x)$ is rotated about the x-axis, the volume may be approximated by a sum of volumes of disks.

The volume of a typical disk is

$$
\pi(\text { radius })^{2}(\text { thickness })=\pi\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x
$$

Thus the volume is

$$
V=\int_{a}^{b} \pi[f(x)]^{2} d x
$$

1. Let R be the region enclosed by $y=\sqrt{x}, y=6-x$, and the x-axis. Sketch the region. Rotate R about the x-axis and find the resulting volume.

Solution: Notice this has to be separated into two integrals because the functions are different for each piece.

Volume of solid is $=\int_{0}^{4} \pi(\sqrt{x})^{2} d x+\int_{4}^{6} \pi(6-x)^{2} d x=\frac{32}{3} \pi . \approx 33.5103$
2. Let R be the region only in the first quadrant enclosed by $y=-x^{2}+2 x+3, y=3 x-3$, and the x-axis. Sketch the region. Rotate R about the x-axis and find the resulting volume.

Solution: Notice this has to be separated into two integrals because the functions are different for each piece.

Volume of solid is $=\int_{1}^{2} \pi(3 x-3)^{2} d x+\int_{2}^{3} \pi\left(-x^{2}+2 x+3\right)^{2} d x=\frac{98}{15} \pi \approx 20.52507$
3. Let R be the region enclosed by $y=6, y=2, x=3$, and $x=7$. Sketch the region. Rotate R about the line $y=4$ and find the resulting volume.

Solution: This is a cylinder

4. Let R be the region enclosed by $y=6, y=2, x=3$, and $x=7$. Sketch the region. Rotate R about the line $y=2$ and find the resulting volume.

Solution: Also a cylinder

5. Let R be the region enclosed by $y=x^{2}-2 x$, and $y=3$. Sketch the region. Rotate R about the line $y=3$ and find the resulting volume.

Solution:

The radius of the solid is $3-\left(x^{2}-2 x\right)$. So, $A(x)=\pi r^{2}=\pi\left(3+2 x-x^{2}\right)^{2}$
Volume of the solid is $\int_{-1}^{3} \pi\left(3+2 x-x^{2}\right)^{2} d x=\frac{512}{15} \pi \approx 107.23302$
6. Let R be the region enclosed by $y=-x^{2}+8$ and $y=4$. Sketch the region. Rotate R about the line $y=4$ and find the resulting volume.

Solution:

The radius of the solid is $-x^{2}+8-4$. So,
$A(x)=\pi r^{2}=\pi\left(-x^{2}+8-4\right)^{2}$.
Volume of the solid is $\int_{-2}^{2} \pi\left(-x^{2}+8-4\right)^{2} d x=\frac{512}{15} \pi \approx 107.23302$

