Math 520

Volume: More Disc Method

§6.2

A solid of revolution is an object obtained by rotating planar region about a line. Usually this line is the x-axis, y-axis, or some other line. Sometimes the resulting figure will have a cross section in the shape of a disk. The volume will be approximated by a sum of volumes of disks which suggest the definite integral.

Volume by Disc Method

If the region under y = f(x) is rotated about the x-axis, the volume may be approximated by a sum of volumes of disks.

The volume of a typical disk is

1. Let R be the region enclosed by $y = \sqrt{x}$, y = 6 - x, and the x-axis. Sketch the region. Rotate R about the x-axis and find the resulting volume.

Solution: Notice this has to be separated into two integrals because the functions are different for each piece.

2. Let R be the region only in the first quadrant enclosed by $y = -x^2 + 2x + 3$, y = 3x - 3, and the x-axis. Sketch the region. Rotate R about the x-axis and find the resulting volume.

3. Let R be the region enclosed by y = 6, y = 2, x = 3, and x = 7. Sketch the region. Rotate R about the line y = 4 and find the resulting volume.

olution: T	his is a cylii	nder
-6 5 -		
4 - 3 -		
-2 1 -		
	3 4 5 6	7 8
-2 -3 -		
-4 - -5 -		
-6		
$\int_3^7 \pi 2^2 dx =$	$16\pi \approx 50.26$	6548.

4. Let R be the region enclosed by y = 6, y = 2, x = 3, and x = 7. Sketch the region. Rotate R about the line y = 2 and find the resulting volume.

5. Let R be the region enclosed by $y = x^2 - 2x$, and y = 3. Sketch the region. Rotate R about the line y = 3 and find the resulting volume.

6. Let R be the region enclosed by $y = -x^2 + 8$ and y = 4. Sketch the region. Rotate R about the line y = 4 and find the resulting volume.

