## Math 520

Review
§§6.1-6.2

1. Find the area of the triangle using calculus.


Solution: The equations of the lines are $y=-\frac{x}{7}+\frac{26}{7}, y=-x+2$, and $y=\frac{x}{2}+\frac{1}{2}$. So

$$
\text { Area }=\int_{-2}^{1}\left[\left(-\frac{x}{7}+\frac{26}{7}\right)-(-x+2)\right] d x+\int_{1}^{5}\left[\left(-\frac{x}{7}+\frac{26}{7}\right)-\left(\frac{x}{2}+\frac{1}{2}\right)\right] d x=9
$$

2. The consumer surplus and producer surplus are represented by the areas shown in the figure below.


If $y=50-.5 x$ is the demand function and $y=.125 x$ is the supply function, find the consumer surplus and producer surplus for the given supply and demand curves.

Solution: The point of equilibrium is $(80,10)$ so
Consumer Surplus $=\int_{0}^{80}((50-.5 x)-10) d x=1600$.
Producer Surplus $=\int_{0}^{80}(10-.125 x) d x=400$.
3. Don't worry about this problem. It won't be on the test. Find $b$ so that the line $y=b$ divides the region bounded by $y=9-x^{2}$ and $y=0$ into two regions of equal area.
Solution:
4. Find the area of the region bounded by the graph $f(x)=x^{3}$ and the tangent line to the graph at the point $(1,1)$.

Solution: Since $f(x)=x^{3}, f^{\prime}(x)=3 x^{2}$, and $f^{\prime}(1)=3$. The equation of the tangent line is $y=3 x-2$. The $x$-coordinates of the points of intersection of the tangent line and the function are $x=-2$ and 1 .


Therefore, the area is

$$
\left.\int_{-2}^{1}\left(x^{3}-(3 x-2)\right)\right] d x=\frac{27}{4}
$$

5. Find the volume of the solid generated by revolving the region bounded by the graphs of $y=$ $-x^{2}+6 x-5$ and $y=0$ about the $x$-axis.
Solution:
6. Find the volume of the solid generated by revolving the region bounded by the graphs of $y=$ $x^{2}-6 x-5$ and $y=-1$ about the line $y=-1$.

