Math 520

U-Substitution Part 2

This section gives a technique for evaluating indefinite integrals that involve the composition of functions. It is the Chain Rule stated in terms of indefinite integrals.

A Formula for Integration by Substitution

If f and u are functions such that $f^{\prime}(u(x)) \cdot u^{\prime}(x)$ is integrable, then

$$
\int f^{\prime}(u(x)) \cdot u^{\prime}(x) d x=f(u(x))+C .
$$

Your choice of the function u is often inside a composition and whose derivative appears elsewhere.
Sometimes you will need to introduce a constant so that the formula is balanced.
Example: $\int x\left(x^{2}+1\right)^{3} d x$
Solution: Let $u=x^{2}+1$. Then $\frac{d u}{d x}=2 x$ and $d u=2 x d x$, but this doesn't match our integrand, we need $x d x$. So if we multiply both sides by $\frac{1}{2}$ we get $\frac{1}{2} d u=x d x$.
Putting the boxed equations together our integral has changed into something we can integrate.

$$
\begin{aligned}
\int x\left(x^{2}+1\right)^{3} d x & =\int \frac{1}{2} u^{3} d u \\
& =\frac{1}{2} \int u^{3} d u \\
& =\frac{1}{2} \cdot \frac{u^{4}}{4}+C \\
& =\frac{\left(x^{2}+1\right)^{4}}{8}+C
\end{aligned}
$$

Example: $\int x(x-3)^{6} d x$
Solution: Let $u=x-3$. Then $\frac{d u}{d x}=1$ and $d u=d x$, but this doesn't match our integrand, we need $x d x$. Since $u=x-3$ we can solve this for x and get $u+3=x$. Putting the boxed equations together our integral has changed into something we can integrate.

$$
\begin{aligned}
\int x(x-3)^{6} d x & =\int(u+3) u^{6} d u \\
& =\int\left(u^{7}+3 u^{6}\right) d u \\
& =\frac{u^{8}}{8}+3 \frac{u^{7}}{7}+C \\
& =\frac{(x-3)^{8}}{8}+3 \frac{(x-3)^{7}}{7}+C
\end{aligned}
$$

1. $\int x^{5}\left(x^{6}+13\right)^{4} d x$

Solution: $\frac{1}{30}\left(x^{6}+13\right)^{5}+C$
2. $\int \frac{1}{3 x+1} d x$

Solution: $\frac{1}{3} \ln (3 x+1)+C$
3. $\int x^{2} \sqrt{1+x^{3}} d x$

Solution: $\frac{2}{9}\left(x^{3}+1\right)^{3 / 2}+C$
4. $\int 6 x \sin \left(x^{2}\right) d x$

Solution: $-3 \cos x^{2}+C$
5. $\int x^{6} e^{5 x^{7}-2} d x$

Solution: $\frac{1}{35} e^{5 x^{2}-2}+C$
6. $\int x(x+4)^{5} d x$

Solution: $\frac{(x+4)^{7}}{7}-4 \frac{(x+4)^{6}}{6}+C$
7. $\int x \sqrt{x+1} d x$

Solution: Let $u=x+1$. Then $\frac{d u}{d x}=1$ and $d u=d x$, but this doesn't match our integrand, we need $x d x$. Since $u=x+1$ we can solve this for x and get $u-1=x$. Putting the boxed equations together our integral has changed into something we can integrate.

$$
\begin{aligned}
\int x \sqrt{x+1} d x & =\int(u-1) \sqrt{u} d u \\
& =\int\left(u^{3 / 2}+u^{1 / 2}\right) d u \\
& =\frac{2}{5} u^{5 / 2}+\frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{5}(x+1)^{5 / 2}+\frac{2}{3}(x+1)^{3 / 2}+C
\end{aligned}
$$

