Math 520

Surface Area

§6.3+
The same technique we used integrals to calculate the length of a curve (arc length). As with other integral applications, arc length will be the limit of the sums of approximations of the lengths of small pieces of the curve.

Surface Area

If $y=f(x)$ has a continuous derivative on $[a, b]$, then the surface area, S, of the solid formed by rotating the graph of f about a horizontal or vertical axis is

$$
S . A .=\int_{a}^{b} 2 \pi r(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

where $r(x)$ is the distance between the graph of f and the axis of rotation.

1. For each of the following, find the arc length of the graph of the given function over the interval $\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$.
(a) $y=\sin x$

Solution: $\int_{\pi / 4}^{\pi / 3} \sqrt{1+\cos ^{2}(x)} d x \approx .307$
(b) $y=\cos x$

Solution: $\int_{\pi / 4}^{\pi / 3} \sqrt{1+\sin ^{2}(x)} d x \approx .334$
(c) $y=\tan x$

Solution: $\int_{\pi / 4}^{\pi / 3} \sqrt{1+\sec ^{4}(x)} d x \approx .779$
(d) $y=\sec x$

Solution: $\int_{\pi / 4}^{\pi / 3} \sqrt{1+\sec ^{2}(x) \tan ^{2}(x)} d x \approx .645$
(e) $y=\csc x$

Solution: $\int_{\pi / 4}^{\pi / 3} \sqrt{1+\csc ^{2}(x) \cot ^{2}(x)} d x \approx .371$
(f) $y=\cot x$

Solution: $\int_{\pi / 4}^{\pi / 3} \sqrt{1+\csc ^{4}(x)} d x \approx .498$
2. For the functions and intervals in \#1, compute the surface area of the solid generated by rotating the curve about the x-axis.

Solution:

(a) $\int_{\pi / 4}^{\pi / 3} 2 \pi \sin (x) \sqrt{1+\cos ^{2}(x)} d x \approx 1.521$
(b) $\int_{\pi / 4}^{\pi / 3} 2 \pi \cos (x) \sqrt{1+\sin ^{2}(x)} d x \approx 1.271$
(c) $\int_{\pi / 4}^{\pi / 3} 2 \pi \tan (x) \sqrt{1+\sec ^{4}(x)} d x \approx 6.663$
(d) $\int_{\pi / 4}^{\pi / 3} 2 \pi \sec (x) \sqrt{1+\sec ^{2}(x) \tan ^{2}(x)} d x \approx 6.884$
(e) $\int_{\pi / 4}^{\pi / 3} 2 \pi \csc (x) \sqrt{1+\csc ^{2}(x) \cot ^{2}(x)} d x \approx 2.973$
(f) $\int_{\pi / 4}^{\pi / 3} 2 \pi \cot (x) \sqrt{1+\csc ^{4}(x)} d x \approx 2.455$

