Math 520

Separable Differential Equations

§7.3
We have looked at differential equation from a geometric view point using slope fields. Now we are going to solve certain differential equations algebraically.

Separable Equation

A separable equation is a first-order differential equation in which the expression $d y / d x$ can be factored as a function of x times a function of y. The x 's and y 's can be separated and written as

$$
\frac{d y}{d x}=\frac{g(x)}{f(y)} .
$$

To solve this equation we rewrite it in differential form

$$
f(y) d y=g(x) d x
$$

so that all the y 's are on one side and the x 's on the other. Then we can integrate both sides

$$
\int f(y) d y=\int g(x) d x .
$$

After integration, if possible, solve for y in terms of x.
The procedure:

1. Rewrite in differential form. Break up the differential. Put all y 's on one side and x 's on the other.
2. Integrate both sides.
3. Consolidate constants to one if necessary.
4. Solve for y if possible and consolidate constants to one if necessary.
5. Initial value.
6. Solve the differential equation $\frac{d y}{d x}=y+x y$ with the initial value of $y(0)=2$.

Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =y+x y \\
\frac{d y}{d x} & =y(1+x) \\
\frac{1}{y} d y & =(1+x) d x \\
\int \frac{1}{y} d y & =\int(1+x) d x \\
\ln y & =x+\frac{x^{2}}{2}+C
\end{aligned}
$$

We could have used a constant C_{1} on the left side and another C_{2} on the right side. But then
we could combine these constants by writing $C=C_{1}+C_{2}$. Now, solving for y we have

$$
\begin{aligned}
\ln y & =x+\frac{x^{2}}{2}+C \\
e^{\ln y} & =e^{x+\frac{x^{2}}{2}+C} \\
y & =e^{x+\frac{x^{2}}{2}+C} \\
y & =e^{x+\frac{x^{2}}{2}} e^{C} \\
y & =K e^{x+\frac{x^{2}}{2}}
\end{aligned}
$$

2. Consider the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$.
(a) Sketch the slope field of the differential equation.

Solution:

(b) Sketch the solution to the differential equation that satisfies the initial condition $y(0)=2$.
(c) Solve the differential equation algebraically.

Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{x^{2}}{y^{2}} \\
y^{2} d y & =x^{2} d x \\
\int y^{2} d y & =\int x^{2} d x \\
\frac{1}{3} y^{3} & =\frac{1}{3} x^{3}+C
\end{aligned}
$$

Solving for y gives $y=\sqrt[3]{x^{3}+3 C}=\sqrt[3]{x^{3}+K}$ where $K=3 C$ and since C is an arbitrary constant, so is K.
(d) Find the solution of this equation that satisfies the initial condition $y(0)=2$.

Solution: Subsituting $x=0$ into the general solution gives $y=\sqrt[3]{K}$. So, $\sqrt[3]{K}=2$ and $K=8$. Therefore the solution is $y=\sqrt[3]{x^{3}+8}$
3. Solve the differential equation $\frac{d y}{d x}=y^{2} \cos x$ with the initial condition $y(\pi)=1$.

Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =y^{2} \cos x \\
\frac{1}{y^{2}} d y & =\cos x d x \\
-\frac{1}{y} & =\sin x+C \\
y & =\frac{-1}{\sin x+C}
\end{aligned}
$$

Now when $y(\pi)=1$ we have,

$$
\begin{aligned}
y & =\frac{-1}{\sin x+C} \\
1 & =\frac{-1}{\sin \pi+C} \\
1 & =\frac{-1}{C} \\
-1 & =C
\end{aligned}
$$

So the solution is $y=\frac{-1}{\sin x-1}$.
4. Solve the differential equation $\frac{d y}{d x}=\frac{6 x^{2}}{2 y+\cos y}$.

Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{6 x^{2}}{2 y+\cos y} \\
(2 y+\cos y) d y & =6 x^{2} d x \\
\int(2 y+\cos y) d y & =\int 6 x^{2} d x \\
y^{2}+\sin y & =2 x^{3}+C
\end{aligned}
$$

It is impossible to solve for y in terms of x so the solution is $y^{2}+\sin y=2 x^{3}+C$.
5. Solve the differential equation $\frac{d y}{d x}=\frac{y \cos x}{1+y^{2}}$ with the initial condition $y(0)=1$.

Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y \cos x}{1+y^{2}} \\
\frac{1+y^{2}}{y} d y & =\cos x d x \\
y^{-1}+y d y & =\cos x d x \\
\int y^{-1}+y d y & =\int \cos x d x \\
\ln y+\frac{y^{2}}{2} & =\sin x+C
\end{aligned}
$$

Now when $y(0)=1$ we have,

$$
\begin{aligned}
\ln y+\frac{y^{2}}{2} & =\sin x+C \\
\ln 1+\frac{1^{2}}{2} & =\sin 0+C \\
\frac{1}{2} & =C
\end{aligned}
$$

So the solution is $\ln y+\frac{y^{2}}{2}=\sin x+\frac{1}{2}$.

