Math 520

More Related Rates

§4.1

1. A rock is dropped into a pond causing a series of circular wavefront of ripples whose radius increases at 3 inches per second. How fast is the area of the circle of ripples expanding at the instant that the circle has radius of 12 inches.

Solution:

The equation of the area of a circle is: $A=\pi r^{2}$
Because the ripples are expanding, both the radius and area are really functions of time. Differentiate the area formula with respect to time, t.

$$
\frac{d A}{d t}=2 \pi r \frac{d r}{d t}
$$

Substituting all known quantities into this equation and solve for the desired rate.
We are given the when $r=12, \frac{d r}{d t}=3$, thus,

$$
\begin{aligned}
\frac{d A}{d t} & =2 \pi(12)(3) \\
\frac{d A}{d t} & =72 \pi
\end{aligned}
$$

2. Jo is 6 feet tall and walking away from a 10 -foot streetlight, at the rate of 3 feet per second. As he walks away from the streetlight, his shadow gets longer. How fast is the length of Matt's shadow increasing when he is 8 feet from the streetlight?

Solution: First we'll draw a picture and introduce notation.

distance from streetlight length of shadow

$$
s=s(t) \quad l=l(t)
$$

To find a relationship between these two rates, we need to find a relationship between s and l. Using similar triangles we have

$$
\frac{10}{s+l}=\frac{6}{l} .
$$

Simplifying this equation before differentiating makes this problem more simple. So,

$$
\begin{aligned}
\frac{10}{s+l} & =\frac{6}{l} \\
10 l & =6(s+l) \\
4 l & =6 s
\end{aligned}
$$

Differentiating both sides yields,

$$
4 \frac{d l}{d t}=6 \frac{d s}{d t}
$$

Substituting the given information into the resulting equation gives us $4 \frac{d l}{d t}=6(3)$. So, $\frac{d l}{d t}=4.5$. Interestingly, we didn't use the fact that Jo is 8 feet from the streetlight. This means that the rate of change of the length of the shadow is the same regardless of the distance Jo is from the streetlight.
3. A trough in the form of a right isosceles prism is 10 feet long. The ends have the shape of isosceles triangles that are 3 feet across at the top and have a height of 1 foot. If the trough is being filled with water at a rate of 12 cubic feet per minute, how fast is the water level rising when the water is .5 feet deep?

Solution:

3

The trough if in the shape of a right triangular prism. The volume of any right prism is (areabase) • (height). Since we know $l=10$,

$$
V=\frac{1}{2} b(h)(10)
$$

We need to find a relationship between b and h. Using similar triangles we have

$$
\frac{3}{1}=\frac{b}{h} .
$$

Simplifying this equation before differentiating makes this problem more simple. So, $b=3 h$ and

$$
V=\frac{1}{2} 3 h(h)(10)=15 h^{2}
$$

Differentiating both sides yields,

$$
\frac{d V}{d t}=30 h \frac{d h}{d t}
$$

Substituting the given information into the resulting equation gives us $12=30\left(\frac{1}{2}\right) \frac{d h}{d t}$. So, $\frac{d h}{d t}=\frac{4}{5}$.

