Math 520

Optimization

§4.6
An optimization problem seeks to find the largest (or smallest) value of a quantity (such as maximum revenue or minimum surface area) given certain limits or constraints. The problems arise in many areas of application. There is a particular method to follow that will help set up and solve them.

A procedure to solve optimization problems

1. Draw a diagram.
2. Introduce notation and identify what quantity is being maximized (or minimized).
3. Write an equation that expresses the quantity being maximized (or minimized) as a function of just one variable.
4. Find the absolute extreme of the function in (3)
5. A gardener wishes to create two equal sized gardens by enclosing a rectangular area with 300 feet of fencing and fence it down the middle. What is the largest rectangular area that may be enclosed?

Solution:

Step 1: Let A be the area of the enclosed

Label one side x and the half side of the other as y since that side is bisected.
Step 2: $A=x(2 y)=2 x y$. The total amount of fence is $3 x+4 y=300$. Thus, $y=\frac{300-3 x}{4}$ and $x \in[0,100]$.

Step 3: Therefore,

$$
A=2 x y=2 x \frac{300-3 x}{4}=150 x-\frac{3}{2} x^{2} .
$$

Step 4: Maximize $A=150 x-\frac{3}{2} x^{2}$ on $[0,100] . A^{\prime}=150-3 x=0$ when $x=50$.
Then $y=\frac{300-3(50)}{4}=37.5$.
So the maximum value of A is $2 x y=2(50)(37.5)=3750$.
2. A cylindrical cup is to be made from 12 square inches of aluminum. What is the largest possible volume of this cup?

Solution:

Step 1: Maximuze the volume V of a cup whose circular base has radius r and whose height is h Step 2: $V=\pi r^{2} h$. The total surface area (bottom plus side) is $12=\pi r^{2}+2 \pi r h$. So,

$$
h=\frac{12-\pi r^{2}}{2 \pi r} \quad \text { where } \quad r \in\left[0, \sqrt{\frac{12}{\pi}}\right]
$$

Step 3: So

$$
V=\pi r^{2} \frac{12-\pi r^{2}}{2 \pi r}=6 r-\frac{\pi}{2} r^{3}
$$

Step 4: $V^{\prime}=6-\frac{3 \pi}{2} r^{2}$. So,

$$
\begin{aligned}
6-\frac{3 \pi}{2} r^{2} & =0 \\
r^{2} & =\frac{4}{\pi} \\
r & =\frac{2}{\sqrt{\pi}}
\end{aligned}
$$

$V^{\prime \prime}=-3 \pi r$ so $r=\frac{2}{\sqrt{\pi}}$ is a maximum. At $r=\frac{2}{\sqrt{\pi}}$ the maximum volume is

$$
V=6\left(\frac{2}{\sqrt{\pi}}\right)-\frac{\pi}{2}\left(\frac{2}{\sqrt{2}}\right)^{3}=\frac{8}{\sqrt{\pi}} .
$$

3. Find the dimensions of the largest rectangular peg that can be put into a round hole with diameter 10 cm .

Solution: Step 1: The largest peg means one with the largest cross sectional area. The cross section of the peg in the hole is shown in the figure below.

Step 2: The quantity to be maximized is area

$$
A=(2 x)(2 y)=4 x y .
$$

The equation for the hole is

$$
x^{2}+y^{2}=25
$$

Therefore

$$
y=\sqrt{25-x^{2}} \quad \text { where } \quad x \in[0,5]
$$

Step 3:

$$
A(x)=4 x y=4 x \sqrt{25-x^{2}}
$$

Step 4: Maximize $A(x)=4 x y=4 x \sqrt{25-x^{2}}$ on $[0,5]$. Both 0 and 5 produce a minimum area of zero, so the maximum occurs when $A^{\prime}(x)=0$. Graphically we see that $A^{\prime}(x)=0$ when $x=\frac{5 \sqrt{2}}{2}$. Yes, this makes a square peg.

