Math 520

Newton's Slide

Suppose you make a guess at the solution to $f(x)=0$. Newton's method can be used to obtain a more accurate guess from your initial guess.

Newton's Method

Let f be a continously differentiable function on an open interval with a real root. If x_{0} is an estimate of the root, then to find another (and hopefully better) approximation of the root calculate...

$$
\begin{gathered}
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \\
\vdots \\
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{gathered}
$$

1. Using the graph at the right, if the initial guess of the root of f is given as x_{0}, draw the tangent line used to find a better guess, x_{1}, of the root. Label the point x_{1}. Is this a better approximation of the root or not?

Solution:

2. Using the graph at the right, if the initial guess of the root of f is given as x_{0}, draw the tangent line used to find a better guess, x_{1}, of the root. Label the point x_{1}. Is this a better approximation of the root or not?

Solution:

3. Use Newton's method with $x_{0}=1$ to estimate a root of $f(x)=2 x^{3}-x-2$ accurate to 5 digits.

Solution:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{2 x_{n}^{3}-x_{n}-2}{6 x_{n}^{2}-1}
$$

With $x_{0}=1$ using your calculator we have
$x_{1}=1.12$
$x_{2} \approx 1.1664921$
$x_{3} \approx 1.1653743$
$x_{4} \approx 1.1653730$
Because the first 5 digits after the decimal point appear stable, $r \approx 1.16537$ is a reasonable estimate to a root, accurate to 5 digits.
4. Use Newton's method with $x_{0}=1$ to estimate a root of $f(x)=x^{3}-6 x^{2}+7 x+2$ accurate to 5 digits.

Solution:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}-6 x_{n}^{2}+7 x_{n}+2}{3 x_{n}^{2}-12 x_{n}+7}
$$

With $x_{0}=1$ using your calculator we have
$x_{1}=3$
$x_{2}=1$
$x_{3}=3$
$x_{4}=1$
Looks like we are stuck in an endless cycle. Why? Can you tell using the figure below?

