

1. (a) Use implicit differentiation to find all the points in Curve A with a horizontal tangent line. (Looking at the graph, how many such points should there be?)

Solution: Using implicit differentiation, we get $\frac{d y}{d x}=\frac{x(3 x+2)}{2 y}$, so the points where $d y / d x=$ 0 are those with x-coordinate $-\frac{2}{3}$. (We can't set $x=0$, because then the equation for Curve A says that y is also 0 . Then $d y / d x$ has a zero in the denominator.) Solving for y, we get the two points $\left(-\frac{2}{3}, \frac{4}{27}\right)$ and $\left(-\frac{2}{3},-\frac{4}{27}\right) \cdot\left(\frac{4}{27} \approx .148148 \ldots.\right)$
(b) Use implicit differentiation to find all the points in Curve B with a horizontal tangent line. (Looking at the graph, how many such points should there be?)

Solution: Using implicit differentiation, we get

$$
\frac{d y}{d x}=\frac{2 x}{2 y-\frac{3}{2} y^{2}},
$$

so the points where $d y / d x=0$ are those with $x=0$ and y nonzero. If $x=0$ on the curve, then either $y=0$ or $y=2$, so we have only the point $(0,2)$.
(c) Try to find $\frac{d y}{d x}$ at the point $(0,0)$ on both graphs. What goes wrong?

Solution: It's not possible to plug in $x=0$ and $y=0$ to either of the expressions for $\frac{d y}{d x}$. The derivative function tells us nothing about $(0,0)$.
2. This next question is a new type of problem that you can solve now that you know about implicit differentiation. Suppose a snowball is rolling down a hill, and its radius r is growing at a rate of 1 inch per minute. The volume V of the snowball grows more quickly as the snowball gets bigger. In this question, you'll find the rate of change of the volume, $\frac{d V}{d t}$, at the instant when the radius r is 6 inches.
(a) First, apply geometry to the situation. Can you think of an equation that relates the variables r and V to each other?

Solution: $V=\frac{4}{3} \pi r^{3}$.
(b) Now the variables V and r change as time changes, so we can think of them as functions of t. Differentiate the equation you came up with in part (a) with respect to t.

$$
\text { Solution: } \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t} .
$$

(c) What is the rate of change of the radius? Use this to simplify your equation from part (b).

Solution: The rate is given; $\frac{d r}{d t}=1$. (Units: inches/minute.)
(d) What is the rate of change of V when the radius of the snowball is 6 inches?

Solution: $\frac{d V}{d t}=4 \pi(6)^{2}=144 \pi$. (Units: cubic inches/minute.)

Here are the formulas for the derivatives of the inverse trigonometric functions:

$$
\begin{array}{rlr}
\frac{d}{d x} \sin ^{-1}=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x} \csc ^{-1} x=\frac{-1}{x \sqrt{x^{2}-1}} \\
\frac{d}{d x} \cos ^{-1}=\frac{-1}{\sqrt{1-x^{2}}} & \frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}} \\
\frac{d}{d x} \tan ^{-1}=\frac{1}{1+x^{2}} & \frac{d}{d x} \cot ^{-1} x=\frac{-1}{1+x^{2}}
\end{array}
$$

3. Find the derivatives of the following
(a) $y=\sin ^{-1}\left(x^{3}\right)$

Solution: $y^{\prime}=\frac{3 x^{2}}{1-x^{6}}$
(b) $y=\left(\tan ^{-1} x\right)^{3}$

Solution: $y^{\prime}=3\left(\tan ^{-1} x\right)^{2} \cdot \frac{1}{1+x^{2}}$
(c) $y=x \cos ^{-1} x$

Solution: $y^{\prime}=\frac{-x}{\sqrt{1-x^{2}}}+\cos ^{-1} x$
(d) $y=e^{\csc ^{-1}\left(x^{2}\right)}$

Solution: $y^{\prime}=e^{\csc ^{-1}\left(x^{2}\right)}\left(\frac{-1}{x^{2} \sqrt{\left(x^{2}\right)^{2}-1}}\right) \cdot 2 x=\frac{-2 e^{\csc ^{-1}\left(x^{2}\right)}}{x \sqrt{x^{4}-1}}$

