## Math 520

## Max \& Min Values $\S 4.2$

This section gives you some tools for finding the largest and smallest values of $f(x)$ for a given function $f$. The largest and smallest values of $f(x)$ are called absolute extreme. Those points where $f(x)$ is largest or smallest in a region around the point $x$ are called relative extreme.

## Absolute Extrema:

A function $f$ has an absolute maximum at $c$ when

$$
f(x) \leq f(c) \quad \text { for all } c .
$$

Thus, a highest point on the graph occurs at $(c, f(c))$.
A function $f$ has an absolute minimumat $c$ when

$$
f(c) \leq f(x) \quad \text { for all } c .
$$

Thus, a lowest point on the graph occurs at $(c, f(c))$.

1. In each of the graphs below, identify the extreme values (absolute max and min) of $f$.
(a)

(b)

(c)


Solution: (a) absolute min at A and C ; absolute max at B
(b) absolute min at E, no absolute max
(c) no absolute max or min.

## Relative Extrema:

If there is some open interval $I$ containing $c$ such that

$$
f(x) \leq f(c) \quad \text { for all } c
$$

then $f$ has a local maximum at $c$. If there is some open interval $I$ containing $c$ such that

$$
f(c) \leq f(x) \quad \text { for all } c
$$

then $f$ has a local minimum at $c$.
2. In each of the graphs below, identify the relative extreme (local max and min) of $f$.
(a)

(b)

(c)


Solution: (a) local min at C; local max at B
(b) no local max or min
(c) local max at K

## Critical Numbers:

A critical number $c$ is a number in the domain of $f$ for which either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
Determining where $f^{\prime}(c)=0$ is a matter of solving the equation $f^{\prime}(x)=0$.
3. Find all the critical points of the following:
(a) $f(x)=3 x^{4}+20 x^{3}-36 x^{3}+7$

Solution: $f^{\prime}(x)=12 x^{3}+60 x^{2}-72 x=12 x(x-1)(x+6)$
So, $f^{\prime}(x)=0$ when $x=0,1,-6$
(b) $f(x)=9 \sqrt{x}+x^{3 / 2}$

Solution: $f^{\prime}(x)=\frac{9}{2 \sqrt{x}}+\frac{3 \sqrt{x}}{2}$ and $f^{\prime}(x)$ does not exist at $x=0$.

## How to Find Extrema:

The extreme values of a continuous function $f$ on a closed interval $[a, b]$ always exist.
The occur either at $a$, at $b$, or at a critical number of $f$ in $(a, b)$.
To find absolute maximum and minimum values of $f$ on a closed interval $[a, b]$, use the Closed Interval Method.

1. Find $f(x)$ at the critical numbers $x$ in $(a, b)$.
2. Find $f(a)$ and $f(b)$.
3. Choose the largest and smallest values from the results of steps 1 and 2.
4. Find the extreme values of $f(x)=\sqrt{10 x-x^{2}}$ on $[2,10]$.

Solution: Since $f$ is continuous on $[2,10]$, the extreme values occur at 2,10 , or some critical number between 2 and 10 .

$$
f^{\prime}(x)=\frac{1}{2}\left(10 x-x^{2}\right)^{-1 / 2}(10-2 x)=\frac{5-x}{\sqrt{10 x-x^{2}}}
$$

$$
\begin{aligned}
& \text { On }[2,10] \text {, } \\
& f^{\prime}(x)=0 \text { at } x=5 \\
& f^{\prime}(x) \text { does not exist at } x=10 . \\
& f(2)=4 \quad f(5)=5 \quad f(10)=0
\end{aligned}
$$

So, the absolute minimum is 0 and occurs at $x=10$
The absolute maximum is 5 and occurs at $x=5$.
5. Find the extreme values of $f(x)=2 x+\sin x$ on $[0,2 \pi]$.

Solution: $f^{\prime}(x)=2+\cos x$. Solving $f^{\prime}(x)=0$ yields $\cos x=-2$ which has no solutions. Therefore there are not critical points. So, $f(0)=2(0)+\sin 0=0$ $f(2 \pi)=2(2 \pi)+\sin 2 \pi=4 \pi$
So, the absolute minimum is 0 and the absolute maximum is $4 \pi$.

