Math 520

Indeterminant Forms and L'Hospital's Rule

Sometimes applying the limit theorems of chapter 3 to a limit results in nonsensical expressions such as $\frac{0}{0}$ even though the limit exists. For example, applying the limit theorems to $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$ yields $\frac{0}{0}$; we know the limit exists and is 4 (you need to factor first to find this limit). L'Hopspital's Rule is a method for evaluating limits that have indeterminate forms such as $\frac{0}{0}$.

L'Hospital's Rule says that if $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$, the $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ may be determined by finding the limit of the quotient of the derivatives. In essence,

$$
\frac{f(x)}{g(x)} \approx \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

for x near a.
There are seven such forms discussed in this section.
Indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$

L'Hospital's Rule for $\frac{0}{0}$

- If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

L'Hospital's Rule for $\frac{\infty}{\infty}$

- If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

Example:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow 2} \frac{2 x}{1} \\
& =4
\end{aligned}
$$

Indeterminate form $0 \cdot \infty$
To evaluate $\lim _{x \rightarrow a} f(x) \cdot g(x)$ which has indeterminate form $0 \cdot \infty$, first rewrite $f(x) \cdot g(x)$ as either

$$
\frac{f(x)}{\frac{1}{g(x)}} \quad \text { or } \quad \frac{g(x)}{\frac{1}{f(x)}}
$$

Now apply L'Hospital's Rule.

Example:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x e^{-x} & =\lim _{x \rightarrow \infty} \frac{x}{e^{x}} \\
& \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{1}{e^{x}} \\
& =0
\end{aligned}
$$

Indeterminate form $\infty-\infty$
To evaluate $\lim _{x \rightarrow a} f(x)-g(x)=\infty-\infty$ rewrite $f(x)-g(x)$ as a single term (ie. get a common denominator or use all sines and cosines). Now apply L'Hospital's Rule.

Example:

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{2}^{-}}(\sec x-\tan x) & =\lim _{x \rightarrow \frac{\pi}{2}^{-}}\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right) \\
& =\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{1-\sin x}{\cos x} \\
& \stackrel{H}{=} \lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{-\cos x}{-\sin x} \\
& =0
\end{aligned}
$$

Indeterminate form $0^{0}, 1^{\infty}$, and ∞^{0}
To evaluate $\lim _{x \rightarrow a}(f(x))^{g(x)}$ where indeterminate forms of type $0^{0}, 1^{\infty}$, and ∞^{0} are possible,

1. Let $y=f(x)^{g(x)}$
2. Then $\ln y=g(x) \cdot \ln f(x)$
3. If $\lim _{x \rightarrow a} g(x) \cdot \ln f(x)$ (type $0 \cdot \infty$) exists and equals L, then

$$
\lim _{x \rightarrow a}(f(x))^{g(x)}=e^{L}
$$

Example: $\lim _{x \rightarrow 0^{+}} x^{x}$ is type 0^{0}. So let $y=x^{x}$. Then $\ln y=\ln x^{x}=x \ln x$. Now,

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln x & =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}\left(\text { type } \frac{\infty}{\infty}\right) \\
& =\frac{\mathrm{H}}{} \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}}-x \\
& =0
\end{aligned}
$$

Thus, $\lim _{x \rightarrow 0^{+}} x^{x}=e^{0}=1$.

1. $\lim _{x \rightarrow 3} \frac{x^{2}-7 x+12}{x^{2}-9}$

Solution: type $\frac{0}{0}$

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-7 x+12}{x^{2}-9} & \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow 3} \frac{2 x-7}{2 x} \\
& =-\frac{1}{6}
\end{aligned}
$$

2. $\lim _{x \rightarrow 0} \frac{\sin x}{x}$

Solution: type $\frac{0}{0}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x} \stackrel{H}{=} \\
& \lim _{x \rightarrow 0} \frac{\cos x}{1} \\
&=\frac{1}{1}=1
\end{aligned}
$$

3. $\lim _{x \rightarrow \infty} \frac{e^{x}}{3 x}$

Solution: type $\frac{\infty}{\infty}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{e^{x}}{3 x} \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{3} \\
&=\infty
\end{aligned}
$$

4. $\lim _{x \rightarrow 0^{+}} x \cot x$

Solution: type $0 \cdot \infty$
So, we need to rewrite $x \cot x=x \cdot \frac{\cos x}{\sin x}=\frac{x}{\sin x} \cdot \cos x$. Now, since $\lim _{x \rightarrow 0^{+}} \frac{x}{\sin x}$ has form $\frac{0}{0}$ we can evaluate the limit as follows.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \cot x & =\lim _{x \rightarrow 0^{+}}\left(\frac{x}{\sin x} \cdot \cos x\right) \\
& =\lim _{x \rightarrow 0^{+}} \frac{x}{\sin x} \cdot \lim _{x \rightarrow 0^{+}} \cos x \\
& \stackrel{H}{=} \lim _{x \rightarrow 0^{+}} \frac{1}{\cos x} \cdot \lim _{x \rightarrow 0^{+}} \cos x \\
& =1 \cdot 1=1
\end{aligned}
$$

