Math 520 Indeterminant Forms and L'Hospital's Rule §4.5

Sometimes applying the limit theorems of chapter 3 to a limit results in nonsensical expressions such as $\frac{0}{0}$ even though the limit exists. For example, applying the limit theorems to $\lim_{x\to 2} \frac{x^2-4}{x-2}$ yields $\frac{0}{0}$; we know the limit exists and is 4 (you need to factor first to find this limit). L'Hopspital's Rule is a method for evaluating limits that have indeterminate forms such as $\frac{0}{0}$.

L'Hospital's Rule says that if $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$, the $\lim_{x\to a} \frac{f(x)}{g(x)}$ may be determined by finding the limit of the quotient of the derivatives. In essence,

$$\frac{f(x)}{g(x)} \approx \frac{f'(x)}{g'(x)}$$

for x near a.

There are seven such forms discussed in this section.

Indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$ *L'Hospital's Rule for* $\frac{0}{0}$ • If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ *L'Hospital's Rule for* $\frac{\infty}{\infty}$ • If $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = \infty$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Example:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} \stackrel{\text{H}}{=} \lim_{x \to 2} \frac{2x}{1} = 4$$

Indeterminate form $0\cdot\infty$

To evaluate $\lim_{x \to \infty} f(x) \cdot g(x)$ which has indeterminate form $0 \cdot \infty$, first rewrite $f(x) \cdot g(x)$ as either

$$rac{f(x)}{rac{1}{g(x)}}$$
 or $rac{g(x)}{rac{1}{f(x)}}$

Now apply L'Hospital's Rule.

Example:

$$\lim_{x \to \infty} x e^{-x} = \lim_{x \to \infty} \frac{x}{e^x}$$
$$\stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{1}{e^x}$$
$$= 0$$

Indeterminate form $\infty-\infty$

To evaluate $\lim_{x\to a} f(x) - g(x) = \infty - \infty$ rewrite f(x) - g(x) as a single term (ie. get a common denominator or use all sines and cosines). Now apply L'Hospital's Rule.

Example:

$$\lim_{x \to \frac{\pi}{2}^{-}} (\sec x - \tan x) = \lim_{x \to \frac{\pi}{2}^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$
$$= \lim_{x \to \frac{\pi}{2}^{-}} \frac{1 - \sin x}{\cos x}$$
$$\stackrel{\text{H}}{=} \lim_{x \to \frac{\pi}{2}^{-}} \frac{-\cos x}{-\sin x}$$
$$= 0$$

Indeterminate form $0^0,\,1^\infty,$ and ∞^0

To evaluate $\lim_{x \to a} (f(x))^{g(x)}$ where indeterminate forms of type 0^0 , 1^∞ , and ∞^0 are possible,

- 1. Let $y = f(x)^{g(x)}$
- 2. Then $\ln y = g(x) \cdot \ln f(x)$
- 3. If $\lim_{x \to a} g(x) \cdot \ln f(x)$ (type $0 \cdot \infty)$ exists and equals L, then

$$\lim_{x \to a} (f(x))^{g(x)} = e^{I}$$

Example: $\lim_{x\to 0^+} x^x$ is type 0^0 . So let $y = x^x$. Then $\ln y = \ln x^x = x \ln x$. Now,

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} (\text{type } \frac{\infty}{\infty})$$
$$\stackrel{\text{H}}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{x^2}}$$
$$= \lim_{x \to 0^+} -x$$
$$= 0$$

Thus, $\lim_{x \to 0^+} x^x = e^0 = 1.$

1. $\lim_{x \to 3} \frac{x^2 - 7x + 12}{x^2 - 9}$

Solution: type $\frac{0}{0}$

$$\lim_{x \to 3} \frac{x^2 - 7x + 12}{x^2 - 9} \stackrel{\text{H}}{=} \lim_{x \to 3} \frac{2x - 7}{2x}$$
$$= -\frac{1}{6}$$

2. $\lim_{x \to 0} \frac{\sin x}{x}$

Solution: type $\frac{0}{0}$

$$\lim_{x \to 0} \frac{\sin x}{x} \stackrel{\mathrm{H}}{=} \lim_{x \to 0} \frac{\cos x}{1}$$
$$= \frac{1}{1} = 1$$

3. $\lim_{x \to \infty} \frac{e^x}{3x}$

Solution: type $\frac{\infty}{\infty}$

$$\lim_{x \to \infty} \frac{e^x}{3x} \stackrel{\mathrm{H}}{=} \lim_{x \to \infty} \frac{e^x}{3} = \infty$$

4. $\lim_{x \to 0^+} x \cot x$

Solution: type $0 \cdot \infty$ So, we need to rewrite $x \cot x = x \cdot \frac{\cos x}{\sin x} = \frac{x}{\sin x} \cdot \cos x$. Now, since $\lim_{x \to 0^+} \frac{x}{\sin x}$ has form $\frac{0}{0}$ we can evaluate the limit as follows. $\lim_{x \to 0^+} x \cot x = \lim_{x \to 0^+} \left(\frac{x}{\sin x} \cdot \cos x\right)$ $= \lim_{x \to 0^+} \frac{x}{\sin x} \cdot \lim_{x \to 0^+} \cos x$ $\stackrel{\text{H}}{=} \lim_{x \to 0^+} \frac{1}{\cos x} \cdot \lim_{x \to 0^+} \cos x$ $= 1 \cdot 1 = 1$