1. Show that $y = 2x^2$ is a solution of the differential equation y' - 4x = 0.

Solution:
$$y' = 4x$$
. So, $y' - 4x = 4x - 4x = 0$

2. Show that $y = x - x^{-1}$ is a solution of the differential equation xy' + y = 2x.

Solution: $y' = 1 + \frac{1}{x^2}$, So,

$$xy' + y = x(1 + \frac{1}{x^2}) + x - \frac{1}{x}$$
$$= x + \frac{1}{x} + x - \frac{1}{x}$$
$$= 2x$$

3. Show that $y = c_2 x + c_1 - \frac{2x^3}{3}$, where c_1 and c_2 are constants, is a solution of the second order differential equation y'' + 4x = 0.

Solution: $y' = c_2 - 2x^2$ and y'' = -4x. So, y'' + 4x = -4x + 4x= 0

4. For what values of r does the function $y = e^{rx}$ satisfy the differential equation 2y'' + y' - y = 0?

Solution: $y' = re^{rx}$ and $y'' = r^2 e^{rx}$. So, $2y'' + y' - y = 2r^2 e^{rx} + r^{rx} - e^{rx}$ $= e^{rx}(2r^2 + r - 1)$ So, $e^{rx} = 0$ or $2r^2 + r - 1 = 0$. Since e^{rx} will never equal 0 we need to solve $2r^2 + r - 1 = 0$ (2r - 1)(r + 1) = 0So $r = \frac{1}{2}$ or r = -1.

5. The general solution to the differential equation y' = 2xy is $y = Ce^{x^2}$ where C > 0. Find a solution that satisfies the initial condition y(1) = 3.

Solution: Since y(1) = 3, we need $3 = Ce^{1^2}$. Thus, $C = \frac{3}{e}$. So the solution is $y = \frac{3}{e}e^{x^2} = 3e^{x^2-1}$

- 6. Consider the differential equation $y' = x^2 y$.
 - (a) Show that every member of the family of functions $y = Ce^{x^3/3}$ is a solution.

Solution: $y' = x^2(Ce^{x^3/3}) = x^2 = 2y$

(b) Find a solution to the above differential equation that satisfies the initial condition y(0) = 8.

Solution: Since, y(0) = 8 we have

$$8 = Ce^{0^{3/3}}$$
$$8 = Ce^{0}$$
$$8 = C$$

So the soution is $y = 8e^{x^3/3}$

(c) Find a solution to the above differential equation that satisfies the initial condition y(8) = 0.

Solution: Since, y(8) = 0, we have $0 = Ce^{8^3/3}$. So, C = 0. The solution is y = 0.