Math 520

Intro to Differential Equations

1. Show that $y=2 x^{2}$ is a solution of the differential equation $y^{\prime}-4 x=0$.

Solution: $y^{\prime}=4 x$. So, $y^{\prime}-4 x=4 x-4 x=0$
2. Show that $y=x-x^{-1}$ is a solution of the differential equation $x y^{\prime}+y=2 x$.

Solution: $y^{\prime}=1+\frac{1}{x^{2}}$, So,

$$
\begin{aligned}
x y^{\prime}+y & =x\left(1+\frac{1}{x^{2}}\right)+x-\frac{1}{x} \\
& =x+\frac{1}{x}+x-\frac{1}{x} \\
& =2 x
\end{aligned}
$$

3. Show that $y=c_{2} x+c_{1}-\frac{2 x^{3}}{3}$, where c_{1} and c_{2} are constants, is a solution of the second order differential equation $y^{\prime \prime}+4 x=0$.

Solution: $y^{\prime}=c_{2}-2 x^{2}$ and $y^{\prime \prime}=-4 x$. So,

$$
\begin{aligned}
y^{\prime \prime}+4 x & =-4 x+4 x \\
& =0
\end{aligned}
$$

4. For what values of r does the function $y=e^{r x}$ satisfy the differential equation $2 y^{\prime \prime}+y^{\prime}-y=0$?

Solution: $y^{\prime}=r e^{r x}$ and $y^{\prime \prime}=r^{2} e^{r x}$. So,

$$
\begin{aligned}
2 y^{\prime \prime}+y^{\prime}-y & =2 r^{2} e^{r x}+r^{r x}-e^{r x} \\
& =e^{r x}\left(2 r^{2}+r-1\right)
\end{aligned}
$$

So, $e^{r x}=0$ or $2 r^{2}+r-1=0$. Since $e^{r x}$ will never equal 0 we need to solve

$$
\begin{aligned}
2 r^{2}+r-1 & =0 \\
(2 r-1)(r+1) & =0
\end{aligned}
$$

So $r=\frac{1}{2}$ or $r=-1$.
5. The general solution to the differential equation $y^{\prime}=2 x y$ is $y=C e^{x^{2}}$ where $C>0$. Find a solution that satisfies the initial condition $y(1)=3$.

Solution: Since $y(1)=3$, we need $3=C e^{1^{2}}$. Thus, $C=\frac{3}{e}$.
So the solution is $y=\frac{3}{e} e^{x^{2}}=3 e^{x^{2}-1}$
6. Consider the differential equation $y^{\prime}=x^{2} y$.
(a) Show that every member of the family of functions $y=C e^{x^{3} / 3}$ is a solution.

Solution: $y^{\prime}=x^{2}\left(C e^{x^{3} / 3}\right)=x^{2}=2 y$
(b) Find a solution to the above differential equation that satisfies the initial condition $y(0)=8$.

Solution: Since, $y(0)=8$ we have

$$
\begin{aligned}
& 8=C e^{0^{3} / 3} \\
& 8=C e^{0} \\
& 8=C
\end{aligned}
$$

So the soution is $y=8 e^{x^{3} / 3}$
(c) Find a solution to the above differential equation that satisfies the initial condition $y(8)=0$.

Solution: Since, $y(8)=0$, we have $0=C e^{8^{3} / 3}$. So, $C=0$. The solution is $y=0$.

