Math 520

Review of Fundamental Theorem of Calculus

§5.3
The Fundamental Theorem of Calculus relates derivatives and integrals.

The Fundamental Theorem of Calculus

If f is a continuous function on $[a, b]$ and

$$
g(x)=\int_{a}^{x} f(t) d t, \text { then } g^{\prime}(x)=f(x) .
$$

If f is a continuous function on $[a, b]$ and F is any antiderivative of f, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

1. Find a polynomial function f with all the following properties:

- $f^{\prime}(x)=a x^{2}+b x$
- $f^{\prime}(1)=6$
- $f^{\prime \prime}(1)=18$
- $\int_{1}^{2} f(x) d x=18$

Solution: $f^{\prime}(1)=a(1)^{2}+b(1)=a+b=6$.

$f^{\prime \prime}(1)=2 a(1)+b(1)=2 a+b=18$. Solving these two equations for both a and b gives $a=12$ and $b=-6$.
Now,

$$
\begin{aligned}
f(x) & =\int f^{\prime}(x) d x \\
& =\int a x^{2}+b x d x \\
& =\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c \\
& =\frac{12 x^{3}}{3}+\frac{-6 x^{2}}{2}+c \\
& =4 x^{3}+3 x^{2}+c
\end{aligned}
$$

Since $\int_{1}^{2} f(x) d x=18$ we have,

$$
\begin{aligned}
\int_{1}^{2} 4 x^{3}+3 x^{2}+C d x & =x^{4}-x^{3}+\left.C x\right|_{1} ^{2} \\
& =\left(2^{4}-2^{3}+2 C\right)-(1-1+C) \\
& =16-8+2 C-C \\
& =8+C
\end{aligned}
$$

And $8+c=18$. So, $C=10$. Thus, $f(x)=4 x^{3}-3 x^{3}+10$.
2. Let $g(x)=\int_{0}^{x} f(t) d t$ where $f(t)$ is the function shown below

(a) Does $g(x)$ have any local maxima in the interval $[0,10]$? If so, where are they located?

Solution: yes, at $x=1, x=5$, and $x=9$
(b) Does $g(x)$ have any local minima in the interval $[0,10]$? If so, where are they located?

Solution: yes, at $x=3$ and $x=7$
(c) At what value of x does $g(x)$ attain its minimum value on the interval $[1,10]$?

Solution: $x=3$
(d) On which subinterval(s) of $[0,10]$, if any, is the graph of $g(x)$ concave up? Justify your answer.

Solution: g is concave up on $(2,4)$ and $(6,8)$ because that is when $g^{\prime \prime}$ is positive.

