Math 520

Fundamental Theorem of Calculus: Part 1

§5.3
The Fundamental Theorem of Calculus relates derivatives and integrals.
The Fundamental Theorem of Calculus: Part 1
If f is a continuous function on $[a, b]$ and F is any antiderivative of f, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Table of Indefinite Ingegrals

$$
\begin{array}{ll}
\int c f(x)=c \int f(x)+C & \int \sin x d x=-\cos x+C \\
\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x & \int \sec ^{2} x=\tan x+C \\
\int x^{n} d x=\int \frac{x^{n+1}}{n+1}+C(n \neq-1) & \int \sec x \tan x=\sec x+C \\
\int \frac{1}{x}=\ln |x|+C & \int \frac{1}{\sqrt{1-x^{2}}}=\sin ^{-1} x+C \\
\int \cos x d x=\sin x+C & \int \frac{1}{1+x^{2}}=\tan ^{-1} x+C \\
\hline
\end{array}
$$

1. Evaluate the following definate integrals.
(a) $\int_{1}^{3}\left(6 x^{2}+2 x\right) d x$

Solution: $\int_{1}^{3}\left(6 x^{2}+2 x\right) d x=2 x^{3}+\left.x^{2}\right|_{1} ^{3}=\left[2(3)^{3}+3^{2}\right]-\left[2(1)^{2}+1^{2}\right]=60$
(b) $\int_{0}^{1} \sqrt{x} d x$

Solution: $\int_{0}^{1} \sqrt{x} d x=\frac{x^{3 / 2}}{3 / 2}=\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{1}=\frac{2}{3}\left(1^{3 / 2}-0^{3 / 2}\right)=\frac{2}{3}$
(c) $\int_{-\pi}^{\pi} \sin x d x$

Solution: $\int_{-\pi}^{\pi} \sin x d x=-\left.\cos x\right|_{-\pi} ^{\pi}=-\cos \pi+\cos (-\pi)=0$
(d) $\int_{1}^{3} \frac{1}{x} d x$

Solution: $\ln 3$
(e) $\int_{-1}^{1} \frac{1}{x^{2}} d x$

Solution: The Fundamental Theorem doesn't apply to this because the function is not continuous on $[-1,1]$. We will learn how to do this later.
(f) $\int_{0}^{1} \frac{1}{1+x^{2}} d x$

Solution: $\int_{0}^{1} \frac{1}{1+x^{2}} d x=\tan ^{-1} 1-\tan ^{-1} 0=\frac{\pi}{4}$

Displacement and Distance

If an object moves along a straight line with position function $s(t)$, then its velocity is $v(t)=s^{\prime}(t)$ so

$$
\int_{t_{1}}^{t_{2}} v(t) d t=s\left(t_{2}\right)-s\left(t_{1}\right)
$$

is the net change of position, or displacement, of the particle during time period from t_{1} to t_{2}. Also,

$$
\int_{t_{1}}^{t_{2}}|v(t)| d t
$$

is the total distance traveled of the particle during time period from t_{1} to t_{2}.
 displacement

$$
=\int_{t_{1}}^{t_{2}} v(t) d t=A_{1}-A_{2}+A_{3}-A_{4}
$$

distance
$=\int_{t_{1}}^{t_{2}}|v(t)| d t=A_{1}+A_{2}+A_{3}+A_{4}$
2. A particle moves along a line so that its velocity at time t is

$$
v(t)=t^{2}-t-6
$$

measure in meters per second.
(a) Find the displacement of the particle during the time period $1 \leq t \leq 4$.

Solution: $\int_{1}^{4} v(t) d t=\int_{1}^{4}\left(t^{2}-t-6\right) d t=\frac{t^{3}}{3}-\frac{t^{2}}{2}-\left.6 t\right|_{1} ^{4}=-\frac{9}{2}$
(b) Find the distance traveled during this time period.

Solution: $v(t) \leq 0$ on $[1,3]$ and $0 \leq v(t)$ on [3, 4] So,

$$
\begin{aligned}
\int_{1}^{4}|v(t)| d t & =\int_{1}^{3}(-v(t)) d t+\int_{3}^{4} v(t) d t \\
& =\int_{1}^{3}\left(-t^{2}+t+6\right) d t+\int_{3}^{4}\left(t^{2}-t+6\right) d t \\
& =\frac{61}{6}
\end{aligned}
$$

