Math 520

Average Value of a Function §6.4

As the graph of a function f varies from $x=a$ to $x=b, f(x)$ may assume many different values. This section shows how the average of these values may be determined. This section also contains a restatement of the Mean Value Theorem - this time in terms of definite integrals.

The Average Value of a Function

The average value of a continuous function $y=f(x)$ over a closed interval $[a, b]$ is

$$
f_{a v e}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

On way to think of this is that $\int_{a}^{b} f(x) d x$ is the are under $f(x)$ and so dividing it by the width $(b-a)$ of the area yields the (average) height of $f(x)$.

The Mean Value Theorem for Integrals

If f is a continuous on a closed interval $[a, b]$ there exists $x \in[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a) .
$$

For $f(x) \geq 0$, we can think of $f(c)(b-a)$ as the area of a rectangle with height $f(c)$ and width $b-a$. The Mean Value Theorem for Integrals says there is some point $c \in[a, b]$ so that the are of this rectangle equals the area under the curve.

1. Let $f(x)=(x-3)^{2}$.
(a) Find the average value of f on $[2,5]$.

Solution: 1

(b) Find c such that $f_{\text {ave }}=f(c)$ on $[2,5]$.

Solution: 2 and 4
(c) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f on $[2,5]$.

Solution:

2. Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}, y=0$, and $x=4$ about:
(a) the x-axis

Solution: $V=\int_{0}^{4} \pi(\sqrt{x})^{2} d x=8 \pi \approx 25.1327$
(b) the y-axis

Solution: $V=\int_{0}^{2}\left[4^{2}-\left(y^{2}\right)^{2}\right] d y=\frac{128}{5} \pi \approx 80.42477$
(c) the line $x=4$

Solution: $V=\int_{0}^{2} \pi\left(4-y^{2}\right)^{2} d y \frac{256}{15} \pi \approx 53.6165$
(d) the line $x=6$

Solution: $V=\int_{0}^{2} \pi\left[\left(6-y^{2}\right)^{2}-2^{2}\right] d y=\frac{192}{5} \pi \approx 120.6372$

