Math 520

Antiderivatives

 §4.9In this section we will begin to learn how to "undo" derivatives; that is, given a derivative, recover the function from where it came. We will see that there is not just one antiderivative function, but rather a whole collection of functions, each of which differ by a constant from one another

Antiderivatives

A function F is called an antiderivative of f on an interval I iff

$$
F^{\prime}(x)=f(x)
$$

for all $x \in I$ and the most general antiderivative of f on I is

$$
F(x)+C
$$

where C is an arbitrary constant.

Function	Form of All Antiderivatives	Function	Form of All Antiderivatives
$c f(x)$	$c F(x)+C$	$\sin x$	$-\cos x+C$
$f(x)+g(x)$	$F(x)+G(x)+C$	$\sec ^{2} x$	$\tan x+C$
$x^{n}($ except $n=-1)$	$\frac{x^{n+1}}{n+1}+C$	$\sec x \tan x$	$\sec x+C$
$\frac{1}{x}$	$\ln \|x\|+C$	$\frac{1}{\sqrt{1-x^{2}}}$	$\sin ^{-1} x+C$
$\cos x$	$\sin x+C$	$\frac{1}{1+x^{2}}$	$\tan ^{-1} x+C$

1. Find all antiderivatives of:
(a) $f(x)=x^{7}$

Solution: $\frac{x^{8}}{8}+C$
(b) $f(x)=\cos x-\sec ^{2} x$

Solution: $\sin x-\tan x+C$
(c) $f(x)=x+x^{-2}$

Solution: $\frac{x^{2}}{2}-\frac{1}{x}+C$
(d) $f(x)=x-e^{x}$

Solution: $\frac{x^{2}}{2}+e^{x}+C$
(e) $f(x)=\frac{2}{\sqrt{x}}$

Solution: $4 x^{\frac{1}{2}}+C$
(f) $f(x)=\frac{4}{\sqrt{1-x^{2}}}$

Solution: $4 \sin ^{-1} x+C$
2. Find $f(x)$ where $f(2)=3$ and $f^{\prime}(x)=4 x+5$.

Solution:

$$
\begin{aligned}
f(x) & =2 x^{2}+5 x+C \\
f(2) & =2(2)^{2}+5(2)+C=18+C \\
3 & =18+C \\
C & =-15 \\
f(x) & =2 x^{2}+5 x-15
\end{aligned}
$$

3. A particle moves along a line with velocity $v=3 t+7$. If the particle is at 4 on the line when $t=1$, find the position function $s(t)$.

Solution:

$$
\begin{aligned}
s(t) & =\frac{3}{2} t^{2}+7 t+C \\
s(1) & =\frac{3}{2}(1)^{2}+7(1)+C=\frac{17}{2}+C \\
4 & =\frac{17}{2}+C \\
C & =-\frac{9}{2} \\
s(t) & =\frac{3}{2} t^{2}+7 t-\frac{9}{2}
\end{aligned}
$$

4. The direction field is given for a function. Use it to draw the antiderivative F that satisfies $F(0)=3$.

Solution:
5. The direction field is given for a function. Use it to draw the antiderivative F that satisfies $F(0)=3$.

