Math 520 Antiderivatives §4.9

In this section we will begin to learn how to "undo" derivatives; that is, given a derivative, recover the function from where it came. We will see that there is not just one antiderivative function, but rather a whole collection of functions, each of which differ by a constant from one another

Antiderivatives

A function F is called an **antiderivative** of f on an interval I iff

F'(x) = f(x)

for all $x \in I$ and the most general antiderivative of f on I is

F(x) + C

where C is an arbitrary constant.

Function	Form of All Antiderivatives	Function	Form of All Antiderivatives
cf(x)	cF(x) + C	$\sin x$	$-\cos x + C$
f(x) + g(x)	F(x) + G(x) + C	$\sec^2 x$	$\tan x + C$
x^n (except $n = -1$)	$\frac{x^{n+1}}{n+1} + C$	$\sec x \tan x$	$\sec x + C$
$\frac{1}{x}$	$\ln x + C$	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x + C$
$\cos x$	$\sin x + C$	$\frac{1}{1+x^2}$	$\tan^{-1}x + C$

1. Find all antiderivatives of:

(a)
$$f(x) = x^7$$

Solution: $\frac{x^8}{8} + C$

(b) $f(x) = \cos x - \sec^2 x$

Solution: $\sin x - \tan x + C$

(c)
$$f(x) = x + x^{-2}$$

Solution:
$$\frac{x^2}{2} - \frac{1}{x} + C$$

(d) $f(x) = x - e^x$

Solution:
$$\frac{x^2}{2} + e^x + C$$

(e)
$$f(x) = \frac{2}{\sqrt{x}}$$

Solution: $4x^{\frac{1}{2}} + C$

(f)
$$f(x) = \frac{4}{\sqrt{1 - x^2}}$$

Solution: $4\sin^{-1}x + C$

2. Find f(x) where f(2) = 3 and f'(x) = 4x + 5.

Solution:

$$f(x) = 2x^{2} + 5x + C$$

$$f(2) = 2(2)^{2} + 5(2) + C = 18 + C$$

$$3 = 18 + C$$

$$C = -15$$

$$f(x) = 2x^{2} + 5x - 15$$

3. A particle moves along a line with velocity v = 3t + 7. If the particle is at 4 on the line when t = 1, find the position function s(t).

Solution:

$$s(t) = \frac{3}{2}t^{2} + 7t + C$$

$$s(1) = \frac{3}{2}(1)^{2} + 7(1) + C = \frac{17}{2} + C$$

$$4 = \frac{17}{2} + C$$

$$C = -\frac{9}{2}$$

$$s(t) = \frac{3}{2}t^{2} + 7t - \frac{9}{2}$$

4. The direction field is given for a function. Use it to draw the antiderivative F that satisfies F(0) = 3.

5. The direction field is given for a function. Use it to draw the antiderivative F that satisfies F(0) = 3.

