21. This limit has the form $\frac{0}{0} \cdot \lim _{x \rightarrow 1} \frac{1-x+\ln x}{1+\cos \pi x} \stackrel{H}{=} \lim _{x \rightarrow 1} \frac{-1+1 / x}{-\pi \sin \pi x} \stackrel{H}{=} \lim _{x \rightarrow 1} \frac{-1 / x^{2}}{-\pi^{2} \cos \pi x}=\frac{-1}{-\pi^{2}(-1)}=-\frac{1}{\pi^{2}}$
22. $\lim _{x \rightarrow-\infty} x^{2} e^{x}=\lim _{x \rightarrow-\infty} \frac{x^{2}}{e^{-x}} \stackrel{\text { H }}{=} \lim _{x \rightarrow-\infty} \frac{2 x}{-e^{-x}} \stackrel{\text { H }}{=} \lim _{x \rightarrow-\infty} \frac{2}{e^{-x}}=\lim _{x \rightarrow-\infty} 2 e^{x}=0$
23. This limit has the form $\infty \cdot 0$. We'll change it to the form $\frac{0}{0}$.

$$
\lim _{x \rightarrow 0} \cot 2 x \sin 6 x=\lim _{x \rightarrow 0} \frac{\sin 6 x}{\tan 2 x} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{6 \cos 6 x}{2 \sec ^{2} 2 x}=\frac{6(1)}{2(1)^{2}}=3
$$

29. This limit has the form $\infty \cdot 0 . \lim _{x \rightarrow \infty} x^{3} e^{-x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x^{2}}} \stackrel{\text { H }}{=} \lim _{x \rightarrow \infty} \frac{3 x^{2}}{2 x e^{x^{2}}}=\lim _{x \rightarrow \infty} \frac{3 x}{2 e^{x^{2}}} \stackrel{\text { H }}{=} \lim _{x \rightarrow \infty} \frac{3}{4 x e^{x^{2}}}=0$
30. The limit has the form $\infty-\infty$ and we will change the form to a product by factoring out x.

$$
\lim _{x \rightarrow \infty}(x-\ln x)=\lim _{x \rightarrow \infty} x\left(1-\frac{\ln x}{x}\right)=\infty \text { since } \lim _{x \rightarrow \infty} \frac{\ln x}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{1 / x}{1}=0 .
$$

35. $y=x^{x^{2}} \Rightarrow \ln y=x^{2} \ln x$, so $\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} x^{2} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x^{2}} \stackrel{H}{=} \lim _{x \rightarrow 0^{+}} \frac{1 / x}{-2 / x^{3}}=\lim _{x \rightarrow 0^{+}}\left(-\frac{1}{2} x^{2}\right)=0 \quad \Rightarrow$ $\lim _{x \rightarrow 0^{+}} x^{x^{2}}=\lim _{x \rightarrow 0^{+}} e^{\ln y}=e^{0}=1$.
