7. (a) $f(x)=x^{3}-12 x+1 \Rightarrow f^{\prime}(x)=3 x^{2}-12=3(x+2)(x-2)$.

We don't need to include " 3 " in the chart to determine the sign of $f^{\prime}(x)$.

Interval	$x+2$	$x-2$	$f^{\prime}(x)$	f
$x<-2$	-	-	+	increasing on $(-\infty,-2)$
$-2<x<2$	+	-	-	decreasing on $(-2,2)$
$x>2$	+	+	+	increasing on $(2, \infty)$

So f is increasing on $(-\infty,-2)$ and $(2, \infty)$ and f is decreasing on $(-2,2)$.
(b) f changes from increasing to decreasing at $x=-2$ and from decreasing to increasing at $x=2$. Thus, $f(-2)=17$ is a local maximum value and $f(2)=-15$ is a local minimum value.
(c) $f^{\prime \prime}(x)=6 x . f^{\prime \prime}(x)>0 \Leftrightarrow x>0$ and $f^{\prime \prime}(x)<0 \Leftrightarrow x<0$. Thus, f is concave upward on $(0, \infty)$ and concave downward on $(-\infty, 0)$. There is an inflection point where the concavity changes, at $(0, f(0))=(0,1)$.
9. (a) $f(x)=x-2 \sin x$ on $(0,3 \pi) \Rightarrow f^{\prime}(x)=1-2 \cos x . \quad f^{\prime}(x)>0 \quad \Leftrightarrow 1-2 \cos x>0 \quad \Leftrightarrow \quad \cos x<\frac{1}{2} \Leftrightarrow$ $\frac{\pi}{3}<x<\frac{5 \pi}{3}$ or $\frac{7 \pi}{3}<x<3 \pi . f^{\prime}(x)<0 \Leftrightarrow \cos x>\frac{1}{2} \quad \Leftrightarrow \quad 0<x<\frac{\pi}{3}$ or $\frac{5 \pi}{3}<x<\frac{7 \pi}{3}$. So f is increasing on $\left(\frac{\pi}{3}, \frac{5 \pi}{3}\right)$ and $\left(\frac{7 \pi}{3}, 3 \pi\right)$, and f is decreasing on $\left(0, \frac{\pi}{3}\right)$ and $\left(\frac{5 \pi}{3}, \frac{7 \pi}{3}\right)$.
(b) f changes from increasing to decreasing at $x=\frac{5 \pi}{3}$, and from decreasing to increasing at $x=\frac{\pi}{3}$ and at $x=\frac{7 \pi}{3}$. Thus, $f\left(\frac{5 \pi}{3}\right)=\frac{5 \pi}{3}+\sqrt{3} \approx 6.97$ is a local maximum value and $f\left(\frac{\pi}{3}\right)=\frac{\pi}{3}-\sqrt{3} \approx-0.68$ and $f\left(\frac{7 \pi}{3}\right)=\frac{7 \pi}{3}-\sqrt{3} \approx 5.60$ are local minimum values.
(c) $f^{\prime \prime}(x)=2 \sin x>0 \Leftrightarrow 0<x<\pi$ and $2 \pi<x<3 \pi, f^{\prime \prime}(x)<0 \quad \Leftrightarrow \quad \pi<x<2 \pi$. Thus, f is concave upward on $(0, \pi)$ and $(2 \pi, 3 \pi)$, and f is concave downward on $(\pi, 2 \pi)$. There are inflection points at (π, π) and $(2 \pi, 2 \pi)$.
11. (a) $y=f(x)=x e^{x} \Rightarrow f^{\prime}(x)=x e^{x}+e^{x}=e^{x}(x+1)$. So $f^{\prime}(x)>0 \quad \Leftrightarrow \quad x+1>0 \quad \Leftrightarrow \quad x>-1$. Thus, f is increasing on $(-1, \infty)$ and decreasing on $(-\infty,-1)$.
(b) f changes from decreasing to increasing at its only critical number, $x=-1$. Thus, $f(-1)=-e^{-1}$ is a local minimum value.
(c) $f^{\prime}(x)=e^{x}(x+1) \Rightarrow f^{\prime \prime}(x)=e^{x}(1)+(x+1) e^{x}=e^{x}(x+2)$. So $f^{\prime \prime}(x)>0 \quad \Leftrightarrow \quad x+2>0 \quad \Leftrightarrow \quad x>-2$. Thus, f is concave upward on $(-2, \infty)$ and concave downward on $(-\infty,-2)$. Since the concavity changes direction at $x=-2$, the point $\left(-2,-2 e^{-2}\right)$ is an inflection point.
27. (a) $f(\theta)=2 \cos \theta-\cos 2 \theta, \quad 0 \leq \theta \leq 2 \pi$.
$f^{\prime}(\theta)=-2 \sin \theta+2 \sin 2 \theta=-2 \sin \theta+2(2 \sin \theta \cos \theta)=2 \sin \theta(2 \cos \theta-1)$.

Interval	$\sin \theta$	$2 \cos \theta-1$	$f^{\prime}(\theta)$	f
$0<\theta<\frac{\pi}{3}$	+	+	+	increasing on $\left(0, \frac{\pi}{3}\right)$
$\frac{\pi}{3}<\theta<\pi$	+	-	-	decreasing on $\left(\frac{\pi}{3}, \pi\right)$
$\pi<\theta<\frac{5 \pi}{3}$	-	-	+	increasing on $\left(\pi, \frac{5 \pi}{3}\right)$
$\frac{5 \pi}{3}<\theta<2 \pi$	-	+	-	decreasing on $\left(\frac{5 \pi}{3}, 2 \pi\right)$

(b) $f\left(\frac{\pi}{3}\right)=\frac{3}{2}$ and $f\left(\frac{5 \pi}{3}\right)=\frac{3}{2}$ are local maximum values and $f(\pi)=-3$ is a local minimum value.
(c) $f^{\prime}(\theta)=-2 \sin \theta+2 \sin 2 \theta \quad \Rightarrow$
$f^{\prime \prime}(\theta)=-2 \cos \theta+4 \cos 2 \theta=-2 \cos \theta+4\left(2 \cos ^{2} \theta-1\right)$

$$
=2\left(4 \cos ^{2} \theta-\cos \theta-2\right)
$$

$f^{\prime \prime}(\theta)=0 \Leftrightarrow \cos \theta=\frac{1 \pm \sqrt{33}}{8} \Leftrightarrow \theta=\cos ^{-1}\left(\frac{1 \pm \sqrt{33}}{8}\right)$
$\Leftrightarrow \quad \theta=\cos ^{-1}\left(\frac{1+\sqrt{33}}{8}\right) \approx 0.5678$,
(d)

$2 \pi-\cos ^{-1}\left(\frac{1+\sqrt{33}}{8}\right) \approx 5.7154, \cos ^{-1}\left(\frac{1-\sqrt{33}}{8}\right) \approx 2.2057$, or $2 \pi-\cos ^{-1}\left(\frac{1-\sqrt{33}}{8}\right) \approx 4.0775$. Denote these four values of θ by $\theta_{1}, \theta_{4}, \theta_{2}$, and θ_{3}, respectively. Then f is CU on $\left(0, \theta_{1}\right), \mathrm{CD}$ on $\left(\theta_{1}, \theta_{2}\right)$,

CU on $\left(\theta_{2}, \theta_{3}\right), \mathrm{CD}$ on $\left(\theta_{3}, \theta_{4}\right)$, and CU on $\left(\theta_{4}, 2 \pi\right)$. To find the exact y-coordinate for $\theta=\theta_{1}$, we have
$f\left(\theta_{1}\right)=2 \cos \theta_{1}-\cos 2 \theta_{1}=2 \cos \theta_{1}-\left(2 \cos ^{2} \theta_{1}-1\right)=2\left(\frac{1+\sqrt{33}}{8}\right)-2\left(\frac{1+\sqrt{33}}{8}\right)^{2}+1$

$$
=\frac{1}{4}+\frac{1}{4} \sqrt{33}-\frac{1}{32}-\frac{1}{16} \sqrt{33}-\frac{33}{32}+1=\frac{3}{16}+\frac{3}{16} \sqrt{33}=\frac{3}{16}(1+\sqrt{33})=y_{1} \approx 1.26
$$

Similarly, $f\left(\theta_{2}\right)=\frac{3}{16}(1-\sqrt{33})=y_{2} \approx-0.89$. So f has inflection points at $\left(\theta_{1}, y_{1}\right),\left(\theta_{2}, y_{2}\right),\left(\theta_{3}, y_{2}\right)$, and $\left(\theta_{4}, y_{1}\right)$.
29. $f(x)=\frac{x^{2}}{x^{2}-1}=\frac{x^{2}}{(x+1)(x-1)}$ has domain $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$.
(a) $\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{x^{2} / x^{2}}{\left(x^{2}-1\right) / x^{2}}=\lim _{x \rightarrow \pm \infty} \frac{1}{1-1 / x^{2}}=\frac{1}{1-0}=1$, so $y=1$ is a HA.
$\lim _{x \rightarrow-1^{-}} \frac{x^{2}}{x^{2}-1}=\infty$ since $x^{2} \rightarrow 1$ and $\left(x^{2}-1\right) \rightarrow 0^{+}$as $x \rightarrow-1^{-}$, so $x=-1$ is a VA.
$\lim _{x \rightarrow 1^{+}} \frac{x^{2}}{x^{2}-1}=\infty$ since $x^{2} \rightarrow 1$ and $\left(x^{2}-1\right) \rightarrow 0^{+}$as $x \rightarrow 1^{+}$, so $x=1$ is a VA.
(b) $f(x)=\frac{x^{2}}{x^{2}-1} \Rightarrow f^{\prime}(x)=\frac{\left(x^{2}-1\right)(2 x)-x^{2}(2 x)}{\left(x^{2}-1\right)^{2}}=\frac{2 x\left[\left(x^{2}-1\right)-x^{2}\right]}{\left(x^{2}-1\right)^{2}}=\frac{-2 x}{\left(x^{2}-1\right)^{2}}$. Since $\left(x^{2}-1\right)^{2}$ is positive for all x in the domain of f, the sign of the derivative is determined by the sign of $-2 x$. Thus, $f^{\prime}(x)>0$ if $x<0$ $(x \neq-1)$ and $f^{\prime}(x)<0$ if $x>0(x \neq 1)$. So f is increasing on $(-\infty,-1)$ and $(-1,0)$, and f is decreasing on $(0,1)$ and $(1, \infty)$.
(c) $f^{\prime}(x)=0 \Rightarrow x=0$ and $f(0)=0$ is a local maximum value .
(d) $f^{\prime \prime}(x)=\frac{\left(x^{2}-1\right)^{2}(-2)-(-2 x) \cdot 2\left(x^{2}-1\right)(2 x)}{\left[\left(x^{2}-1\right)^{2}\right]^{2}}$

$$
=\frac{2\left(x^{2}-1\right)\left[-\left(x^{2}-1\right)+4 x^{2}\right]}{\left(x^{2}-1\right)^{4}}=\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}} .
$$

The sign of $f^{\prime \prime}(x)$ is determined by the denominator, that is, $f^{\prime \prime}(x)>0$ if
(e)
 $|x|>1$ and $f^{\prime \prime}(x)<0$ if $|x|<1$. Thus, f is CU on $(-\infty,-1)$ and $(1, \infty)$, and f is CD on $(-1,1)$. There are no inflection points.

