Math 510

1. Match the graphs of each of the five functions below with the graphs of their derivatives.

(i)

(iv)

(v)

Derivatives:

(E)

(B)

(F)

(G)

(H)

Answer:
(i) D
(ii) B
(iii) H
(iv) G
(v) F
2. Determine the following derivatives.
(a) $\frac{d}{d x} x^{3}+3 x^{2}-4$
(b) $\frac{d^{2}}{d x^{2}} x^{3}+3 x^{2}-4$
(c) $\frac{d}{d x} 3 e^{x}$
(d) $\frac{d}{d x} 3 e^{x}+e^{3}+x^{e}$
(e) $\frac{d}{d x} \pi^{3}$

Answer:

(a) $\frac{d}{d x} x^{3}+3 x^{2}-4=3 x^{2}+6 x$
(b) $\frac{d^{2}}{d x^{2}} x^{3}+3 x^{2}-4=6 x+6$
(c) $\frac{d}{d x} 3 e^{x}=3 e^{x}$
(d) $\frac{d}{d x} 3 e^{x}+e^{3}+x^{e}=3 e^{x}+0+x^{e}(\ln e)=3 e^{x}+x^{e}$
(e) $\frac{d}{d x} \pi^{3}=0$
3. Let

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<0 \\ a x+b & \text { if } x \geq 0\end{cases}
$$

Find all the values a and b such that
(a) $f(x)$ is continuous.
(b) $f(x)$ is differentiable.

Answer: (a) $b=1$ and a can be any real number.
(b) $a=0$ and $b=1$
4. Given the graphs of f and g below, evaluate each of the following limits. If the limit does not exist, say why.

(a) $\lim _{x \rightarrow 2} f(x)$
(b) $\lim _{x \rightarrow-1^{+}} g(x)$
(c) $\lim _{x \rightarrow-1^{-}} g(x)$
(d) $\lim _{x \rightarrow-1}[f(x)+g(x)]$
(e) $\lim _{x \rightarrow 3} \frac{f(x)}{x-3}$
(f) $\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$
(g) $\lim _{x \rightarrow-2} \frac{g(x)-g(-2)}{x+2}$

Answer:

(a) 1
(b) 2
(c) 1
(d) DNE
(e) -1 or at least know that $\frac{0}{0}$ means you need to do more more work to figure it out. (f) -1 (g) $\frac{1}{3}$
5. The graph of f is shown below. Match the derivatives in the following table with the points a, b, c, d, and e on the graph below.

x					
$f^{\prime}(x)$	0	1.75	6.75	-1.25	-2.25

Answer:

x	b	a	e	d	c
$f^{\prime}(x)$	0	1.75	6.75	-1.25	-2.25

6. Use the table of values for f, g, f^{\prime}, and g^{\prime} to answer the following questions.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

(a) If $h(x)=f(g(x))$, find $h^{\prime}(1)$.
(b) If $H(x)=g(f(x))$, find $H^{\prime}(1)$.
Answer: (a) $h^{\prime}(1)=30$
(b) $H^{\prime}(1)=8$
7. If f and g are the functions whose graphs are shown, let $u(x)=f(g(x)), v(x)=g(f(x))$, and $w(x)=g(g(x))$.

Find each of the following derivatives.
(a) $u^{\prime}(1)$
(b) $v^{\prime}(1)$
(c) $w^{\prime}(1)$
Answer: (a) $u^{\prime}(1)=\frac{3}{4}$
(b) $v^{\prime}(1) \mathrm{DNE}$
(c) $w^{\prime}(1)=-2$

