1. Match the graphs of each of the five functions below with the graphs of their derivatives.

^{2.} Determine the following derivatives.

(a)
$$\frac{d}{dx}x^3 + 3x^2 - 4$$

(b)
$$\frac{d^2}{dx^2}x^3 + 3x^2 - 4$$

(c)
$$\frac{d}{dx}3e^x$$

(d)
$$\frac{d}{dx}3e^x + e^3 + x^e$$

(e)
$$\frac{d}{dx}\pi^3$$

Answer:
(a)
$$\frac{d}{dx}x^3 + 3x^2 - 4 = 3x^2 + 6x$$

(b) $\frac{d^2}{dx^2}x^3 + 3x^2 - 4 = 6x + 6$
(c) $\frac{d}{dx}3e^x = 3e^x$
(d) $\frac{d}{dx}3e^x + e^3 + x^e = 3e^x + 0 + x^e(\ln e) = 3e^x + x^e$
(e) $\frac{d}{dx}\pi^3 = 0$

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x < 0\\ ax + b & \text{if } x \ge 0 \end{cases}$$

Find all the values a and b such that

- (a) f(x) is continuous.
- (b) f(x) is differentiable.

Answer: (a) b = 1 and a can be any real number. (b) a = 0 and b = 1

4. Given the graphs of f and g below, evaluate each of the following limits. If the limit does not exist, say why.

(a) $\lim_{x \to 2} f(x)$

(b)
$$\lim_{x \to -1^+} g(x)$$

(c) $\lim_{x \to -1^-} g(x)$
(d) $\lim_{x \to -1} [f(x) + g(x)]$
(e) $\lim_{x \to 3} \frac{f(x)}{x - 3}$
(f) $\lim_{h \to 0} \frac{f(3 + h) - f(3)}{h}$
(g) $\lim_{x \to -2} \frac{g(x) - g(-2)}{x + 2}$

Answer:

(a) 1 (b) 2 (c) 1 (d) DNE (e) -1 or at least know that $\frac{0}{0}$ means you need to do more more work to figure it out. (f) -1 (g) $\frac{1}{3}$

5. The graph of f is shown below. Match the derivatives in the following table with the points a, b, c, d, and e on the graph below.

Answer:						
	x	b	a	e	d	c
	f'(x)	0	1.75	6.75	-1.25	-2.25

6. Use the table of values for f, g, f', and g' to answer the following questions.

x	f(x)	g(x)	f'(x)	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

(a) If
$$h(x) = f(g(x))$$
, find $h'(1)$.

(b) If H(x) = g(f(x)), find H'(1).

Answer: (a)
$$h'(1) = 30$$
 (b) $H'(1) = 8$

7. If f and g are the functions whose graphs are shown, let u(x) = f(g(x)), v(x) = g(f(x)), and w(x) = g(g(x)).

Find each of the following derivatives.

- (a) u'(1)
- (b) v'(1)
- (c) w'(1)

Answer: (a) $u'(1) = \frac{3}{4}$ (b) v'(1) DNE (c) w'(1) = -2