## Math 510

1. Determine the second derivative of the following.
(a) $f(x)=\sqrt{x^{2}+9}$

Answer: $f^{\prime}(x)=\frac{9}{\left(x^{2}+9\right)^{3 / 2}}$
(b) $f(t)=\frac{t}{(1-t)^{2}}$

Answer: $f^{\prime}(t)=\frac{2(t+2)}{(1-t)^{4}}$
(c) $f(\theta)=\cot x$

Answer: $f^{\prime}(\theta)=2 \csc ^{2} \theta \cot \theta$
2. For $y=\sqrt[3]{(x-2)^{2}}$ determine
(a) the equation of the tangent line at $(3,1)$

Answer: $y-1=\frac{2}{3}(x-3)$
(b) the equation of the normal line at $(3,1)$.

Answer: $y-1=\frac{-3}{2}(x-3)$
3. Find the points on the graph of

$$
f(x)=\frac{x^{3}}{3}+x^{2}-x-1
$$

at which the slope is
(a) -1

Answer: $(0,-1)$ and $\left(-2, \frac{7}{3}\right)$
(b) 2

Answer: $(-3,2)$ and $\left(1,-\frac{2}{3}\right)$
(c) 0

Answer: $x=-1 \pm \sqrt{2}$
4. Determine the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\frac{1}{x+1}-1}{x}$

Answer: -1
(b) $\lim _{x \rightarrow-2} \frac{t+2}{t^{2}-4}$

Answer: $\frac{-1}{4}$
5. Determine the value of $a$ so that the following function is continuous on the entire real line.

$$
f(x)= \begin{cases}x+3, & \text { if } x \leq 2 \\ a x+6, & \text { if } x>2\end{cases}
$$

Answer: $a=-\frac{1}{2}$
6. Use the limit definition of the derivative to find $y^{\prime}$ if $y=\frac{1}{x}$

## Answer:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} & =\lim _{h \rightarrow 0} \frac{\frac{x-(x+h)}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)} \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

