Math 510

Derivatives 1

The derivative of a function $f(x)$ at a point a is

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{1}
\end{equation*}
$$

An equivalent way to write this is

$$
\begin{equation*}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \tag{2}
\end{equation*}
$$

1. Using equation (1), follow these steps to find $f^{\prime}(3)$ for $f(x)=x^{2}+10 x$.
(a) Find $f(3+h)$.

Solution: $f(3+h)=(3+h)^{2}+10(3+h)=9+6 h+h^{2}+30+10 h=h^{2}-16 h+39$
(b) Find $f(3+h)-f(3)$.

Solution: $f(3+h)-f(3)=h^{2}-16 h+39-39=h^{2}-16 h$
(c) Determine $\frac{f(3+h)-f(3)}{h}$ and simplify (if possible) when $h \neq 0$.

Solution: $\frac{f(3+h)-f(3)}{h}=\frac{h^{2}-16 h}{h}=h-16$
(d) Find the limit in part (c).

Solution: $\lim _{h \rightarrow 0} h-16=-16$
2. Using equation (2), follow these steps to find $f^{\prime}(3)$ for $f(x)=2 x-x^{2}$.
(a) Find $f(x)-f(3)$.

Solution: $f(x)-f(3)=2 x-x^{2}-(-3)=2 x-x^{2}+3$
(b) Determine $\frac{f(x)-f(3)}{x-3}$ and simplify (if possible) when $x \neq 3$.

Solution: $\frac{f(x)-f(3)}{x-3}=\frac{-x^{2}+2 x+3}{x-3}=-\frac{x^{2}-2 x-3}{x-3}=-\frac{(x-3)(x+1)}{x-3}=-(x+1)$
(c) Find the limit in part (b).

Solution: $\lim _{x \rightarrow 3}-(x+1)=-4$
3. Follow these steps to find $f^{\prime}(a)$ when $f(x)=3+x^{2}$.
(a) Find $f(a+h)$.

Solution: $f(a+h)=3+(a+h)^{2}=3+a^{2}+2 a h+h^{2}$
(b) Find $f(a+h)-f(a)$.

Solution: $f(a+h)-f(a)=3+a^{2}+2 a h+h^{2}-\left(3+a^{2}\right)=2 a h+h^{2}$
(c) Determine $\frac{f(a+h)-f(a)}{h}$ and simplify (if possible) when $h \neq 0$.

Solution: $\frac{f(a+h)-f(a)}{h}=\frac{2 a h+h^{2}}{h}=2 a+h$
(d) Find the limit in part (c).

Solution: $\lim _{h \rightarrow 0} 2 a+h=2 a$

The slope m of the tangent line to $f(x)$ at the point a is

$$
\begin{equation*}
m=f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{3}
\end{equation*}
$$

An equivalent way to write this is

$$
\begin{equation*}
m=f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \tag{4}
\end{equation*}
$$

Using the point-slope form of the equation a line, you write an equation of the tangent line to f at the point a is

$$
y-f(a)=f^{\prime}(a)(x-a) .
$$

4. Given that $f^{\prime}(x)=3 x^{2}+2$ for $f(x)=x^{3}+2 x+1$, find
(a) the slope of the tangent line to f at the point $x=2$.

Solution: $m=f^{\prime}(2)=3(2)^{2}+2=14$
(b) the equation of the line tangent to f at the point $x=2$.

Solution: The point of tangency has x coordinate 2 and y coordinate $f(2)=2^{3}+2(2)=$ 13. So the equation of the tangent line is $y-13=14(x-2)$.
(c) the instantaneous velocity at time $x=4$ if $f(x)$ represents the distance in feet of a particle from the origin at time x.

Solution: $f^{\prime}(4)=3(4)^{2}+3=51 \mathrm{ft} / \mathrm{s}$.
5. Using equation (3), follow these steps to find the slope and equation of the tangent line to $f(x)=\frac{2}{x}$ at $x=1$.
(a) Find $f(1+h)$.

Solution: $f(1+h)=\frac{2}{1+h}$
(b) Find $f(1+h)-f(1)$

Solution: $f(1+h)-f(1)=\frac{2}{1+h}-\frac{2}{1}$
(c) Determine $\frac{f(1+h)-f(1)}{h}$ and simplify when $h \neq 0$.

Solution:

$$
\frac{f(1+h)-f(1)}{h}=\frac{\frac{2}{1+h}-\frac{2}{1}}{h}=\left(\frac{\frac{2-2(1+h)}{1+h}}{h}\right)=\frac{2-2-2 h}{h(1+h)}=\frac{-2 h}{h(1+h)}=\frac{-2}{1+h}
$$

(d) Find the limit in part (c). This is the slope of the tangent line.

Solution: $\lim _{h \rightarrow 0} \frac{-2}{1+h}=\frac{-2}{1+0}=-2$
(e) Using the point slope form of the equation of a line, $y-f(1)=f^{\prime}(1)(x-1)$.

Solution: $y-2=-2(x-1)$
6. For the graph of the function f given below, arrange the following numbers in increasing order:

Solution: $f^{\prime}(b)<f^{\prime}(d)<f^{\prime}(a)<f^{\prime}(c)$

