Math 510

Chain Rule

§3.5
This section give another rule for finding derivatives of functions built up from simpler ones. The Chain Rule determines the derivative of a composition of functions. The key to correct use of the Chain Rule comes from first recognizing that the function to be differentiated is a composite and determining the components.

The Chain Rule: If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $f(g(x))$ is differentiable at x and

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

"the derivative of the outer, composed with the inner, times the derivative of the inner"

1. Complete the following
(a) $f(x)=(x+3)^{4}$
outer function(in terms of u): inner function(in terms of x):
derivative of the outer $(d u)$: derivative of the inner $(d x)$:

Solution:

outer function(in terms of $u): u^{4} \quad$ inner function(in terms of $\left.x\right): x+3$ derivative of the outer $(d u): 4 u^{3} \quad$ derivative of the inner $(d x): 1$
(b) $f(x)=\cos x^{2}$
outer function(in terms of $u)$: inner function(in terms of x):
derivative of the outer $(d u)$: derivative of the inner $(d x)$:

Solution:

outer function(in terms of $u): \cos u$	inner function(in terms of $x): x^{2}$
derivative of the outer $(d u):-\sin u$	derivative of the inner $(d x): 2 x$

(c) $f(x)=\sqrt{1+\frac{1}{x}}$
outer function(in terms of u):
derivative of the outer (du):

Solution:

outer function(in terms of u): \sqrt{u}
derivative of the outer $(d u): \frac{1}{2} u^{-\frac{1}{2}}$
inner function(in terms of x):
derivative of the inner $(d x)$:
inner function(in terms of $x): 1+x^{-1}$
derivative of the inner $(d x):-x^{-2}$
2. Find the derivatives of each of the functions in 1 (a)-(c).

Solution:

(a) $f^{\prime}(x)=4(x+3)^{3}$
(b) $f^{\prime}(x)=\left(-\sin x^{2}\right) \cdot 2 x$
(c) $f^{\prime}(x)=\frac{1}{2}\left(1+\frac{1}{x}\right)^{-\frac{1}{2}} \cdot\left(0+(-1) x^{-2}\right)$
3. Let $h(x)=f(g(x)), f^{\prime}(7)=3, g(4)=7$, and $g^{\prime}(4)=5$. Find $h^{\prime}(4)$.

Solution: $h^{\prime}(4)=f^{\prime}(g(4)) \cdot g^{\prime}(4)=f^{\prime}(7) \cdot 5=3 \cdot 5=15$
4. Determine the derivatives of the following. You do not need to simplify.
(a) $f(x)=\sqrt{x^{3}+6 x}$

Solution: $f^{\prime}(x)=\frac{1}{2}\left(x^{3}+6 x\right)^{\frac{1}{2}}\left(3 x^{2}+6\right)$
(b) $f(x)=\sin 2 x$

Solution: $f^{\prime}(x)=2 \cos (2 x)$
(c) $f(x)=\sec x^{2}$

Solution: $f^{\prime}(x)=\left(\sec x^{2}\right)\left(\tan x^{2}\right)(2 x)$
(d) $f(x)=\sin (\sec x)$

Solution: $f^{\prime}(x)=\cos (\sec x)(\sec x \tan x)$
(e) $f(x)=\sin 2 x \cos 3 x$

Solution: $f^{\prime}(x)=(\sin 2 x)(-\sin 3 x \cdot 3)+(\cos 3 x)(\cos 2 x \cdot 2)$
(f) $f(x)=\frac{1}{\left(x^{2}-1\right)^{4}}$

Solution: Since $f(x)=\frac{1}{\left(x^{2}-1\right)^{4}}=\left(x^{2}-1\right)^{-4}$ we have $f^{\prime}(x)=-4\left(x^{2}-1\right)^{-5}(2 x)$
(g) $f(x)=x^{3} \sqrt{x^{2}+1}$

Solution: $f^{\prime}(x)=x^{3}\left(\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}} \cdot 2 x+\left(x^{2}+1\right)^{\frac{1}{2}} \cdot 3 x^{2}\right.$

