Math 510

Rates of Change: Position, Velocity, Acceleration

The position of a particle is given by the equation

$$
s(t)=t^{3}-10 t^{2}+25 t \quad \text { for } \quad 0 \leq t \leq 6
$$

where t is measured in seconds and s in meters.

1. Determine the velocity of the particle at any time t.

Solution: $v(t)=s^{\prime}(t)=3 t^{2}-20 t+25$
2. Determine the time(s) t when the particle is moving (a) forward (when $v(t)>0$), (b) backward (when $v(t)<0$), (c) and at rest (when $v(t)=0$).

Solution: (a) the particle is moving forward when $v(t)>0$.
(b) the particle is moving forward when $v(t)<0$.
(c) the particle is at rest when $v(t)=0$.

From the graph of $v(t)$ we see that the particle is moving,
forward when $0<t<1.67$ and $5<t<6$
backward when $1.67<t<5$
rest when $t=1.67$ and $t=5$.
3. Draw a diagram to represent the motion of the particle that is just like the Figure 2 on pg. 202.

Solution:

4. Determine the total distance traveled by the particle during the first 6 seconds.

Solution: $|s(1.67)-s(0)|+|s(1.67)-s(5)|+|s(6)-s(5)|=18.52+18.52+16=43.04$
5. Determine the acceleration of the particle at any time t.

Solution: $a(t)=v^{\prime}(t)=6 t-20$
6. Sketch the graph of the velocity and acceleration functions on the same axis.

7. Determine the values of t when the particle is (a) speeding up and (b) slowing down.

Solution: (a) speeding up when $v(t)$ and $a(t)$ have the same sign. So for $1.67<t<3.33$ and $5<t<6$.
(b) slowing down when $v(t)$ and $a(t)$ have opposite signs. So for $0<t<1.67$ and $3.33<t<5$.

