Math 510

Product and Quotient Rules §3.2

(6) 1. Find the points on the graph of $y=x^{3 / 2}-x^{1 / 2}$ at which the tangent line is parallel to the line $y-x=3$.

Solution: $y^{\prime}(x)=\frac{3}{2} \sqrt{x}-\frac{1}{2} \cdot \frac{1}{\sqrt{x}}$. We want to find the points on y that have a slope of 1 . So, we want to know when $y^{\prime}(x)=1$.

$$
\begin{aligned}
1 & =\frac{3}{2} \sqrt{x}-\frac{1}{2} \cdot \frac{1}{\sqrt{x}} \\
2 & =3 \sqrt{x}-\frac{1}{\sqrt{x}} \\
2 \sqrt{x} & =3 x-1 \\
4 x & =9 x^{2}-6 x+1 \\
0 & =9 x^{2}-10 x+1 \\
0 & =(9 x-1)(x-1)
\end{aligned}
$$

So, $x=\frac{1}{9}$ and $x=1$. But a quick check shows that $y^{\prime}\left(\frac{1}{9}\right)=-1$. So, the only point is $x=1$.
(6) 2. Find the equation of the tangent line to the curve $y=\frac{e^{x}}{1+x^{2}}$ at the point $\left(1, \frac{e}{2}\right)$.

Solution:

$$
\begin{aligned}
y^{\prime}(x) & =\frac{\left(1+x^{2}\right) e^{x}-e^{x}(2 x)}{\left(1-x^{2}\right)^{2}} \\
& =\frac{e^{x} x^{2}-2 e^{x} x+e^{x}}{x^{4}+2 x^{2}+1}
\end{aligned}
$$

and $y^{\prime}(1)=\frac{(e) 1^{2}-2 e(1)+e}{1^{4}+2^{2}+1}=\frac{0}{4}=0$. So, the equation of the tangent line is $y-\frac{e}{2}=0(x-1)$ or $y=\frac{e}{2}$
(6) 3. If f and g are functions such that $f(2)=3, f^{\prime}(2)=-1, g(2)=-5$, and $g^{\prime}(2)=2$, find $\left(\frac{f}{g}\right)^{\prime}$

Solution:

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime}(2) & =\frac{g(2) f^{\prime}(2)-f(2) g^{\prime}(2)}{[g(2)]^{2}} \\
& =\frac{-5(-1)-3(2)}{(-5)^{2}} \\
& =\frac{-1}{25}
\end{aligned}
$$

(6) 4. Find the second derivative of $y=\frac{3 x-1}{\sqrt{x}}$.

Solution:

$$
\begin{aligned}
y^{\prime}(x) & =\frac{\sqrt{x}(3)-(3 x-1) \frac{1}{2} x^{-\frac{1}{2}}}{x} \\
& =\frac{3 x+1}{2 \sqrt{x^{3}}} \\
y^{\prime \prime}(x) & =\frac{-3 \sqrt{x^{3}}-3 \sqrt{x}}{4 x^{3}}
\end{aligned}
$$

