Math 510
More What does f^{\prime} say about f ?
§2.9
1.

$1989-A B 5$

Note: This is the graph of the derivative of f, not the graph of f.
The figure above shows the graph of f^{\prime}, the derivative of a function f. The domain of f is the set of all real numbers x such that $-10 \leqq x \leqq 10$.
(a) For what values of x does the graph of f have a horizontal tangent?
(b) For what values of x in the interval $(-10,10)$ does f have a relative maximum? Justify your answer.
(c) For what values of x is the graph of f concave downward?

19 $8^{\text {Solution }} A B 5$

Note: This is the graph of the derivative of f, not the graph of f.
The figure above shows the graph of f^{\prime}, the derivative of a function f. The domain of f is the set of all real numbers x such that $-10 \leqq x \leqq 10$.
(a) For what values of x does the graph of f have a horizontal tangent?
(b) For what values of x in the interval $(-10,10)$ does f have a relative maximum? Justify your answer.
(c) For what values of x is the graph of f concave downward?
a.) f has a horizontal tangent at points where $f^{\prime}(x)=0$. This occurs at $x=-7,-1,4,8$
b.) $f^{\prime}(x)$:

f has a relative max. at $x=-1$ and at $x=8$ f continuous at $x=a$, f increasing when $x<a\} \Rightarrow f(a)$ is a relative max. f decreasing when $x>a$
c.) $f^{\prime \prime}(x)$:

f is concave down when $-3<x<2$ or $6<x<10$
Reprinted by permission of the College Entrance Examination Board, the copyright owner. For limited use by MOEMS.
2. The graphs of four functions (a)-(d) are shown. Match each one with its derivative, chosen from the six graphs (e)-(j) pictured below.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Solution: (a)-(e)
(b)-(h)
(c)-(g)
(d)-(j)
3. The graph of f^{\prime} is shown below. Use it to answer the following questions.

Figure 1: default
(a) On what interval(s) is f increasing?

Solution: $-3<x<0$ and $2<x<5$
(b) On what interval(s) is f concave down?

Solution: $-1<x<1$
(c) Identify, if any, the x-coordinate of all local maxima and minima of f.

Solution: Local max at $x=0$, Local min at $x=-3$ and 2
(d) Identify, if any, the x-coordinate of all points of inflection of f.

Solution: $x=-1$ and 1
(e) If $f(1)=0$, is $f(2)$ positive or negative? Justify.

Solution: $f(2)<0$ because the values of f^{\prime} are negative for all x between 1 and 2 so the graph of f is decreasing for $1<x<2$. Since $f(1)=0, f(2)<0$.

