Math 510

Derivatives of Polynomials \& Exponential Functions

This is how to calculate the derivative for many types of functions using formulas rather than the limit definition. We'll start off with the derivatives of a constant function, polynomials, power functions, sums and differences, and finally exponential functions.
The derivative of a constant function $f(x)=c$ is

$$
\frac{d}{d x} c=0
$$

The General Power Rule states:

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

The derivative of an arithmetic combination of functions can be found by putting together the derivatives of the components using these rules:

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x) \quad \text { for any constant } c
$$

"the derivative of a constant times a function is the constant time the derivative of the function"

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

"the derivative of a sum of a function is the sum of the derivatives"

$$
\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)
$$

"the derivative of a difference of a function is the difference of the derivatives"

1. Determine the derivative of the following.
(a) $\frac{d}{d x}-55$

Solution: $\frac{d}{d x}-55=0$
(b) $\frac{d}{d x} x^{6}$

Solution: $\frac{d}{d x} x^{6}=6 x^{5}$
(c) $\frac{d}{d x} 5 x^{4}$

Solution: $\frac{d}{d x} 5 x^{4}=20 x^{3}$
(d) $\frac{d}{d x}\left(x^{4}+4 x^{3}\right)$

Solution: $\frac{d}{d x}\left(x^{4}+4 x^{3}\right)=4 x^{3}+12 x^{2}$
(e) $\frac{d}{d x}\left(7 x^{3}+6 x^{2}+10 x+12\right)$

Solution: $\frac{d}{d x}\left(7 x^{3}+6 x^{2}+10 x+12\right)=21 x^{2}+12 x+10$
(f) $\frac{d}{d x}\left(x^{-7}-x^{-6}\right)$

Solution: $\frac{d}{d x}\left(x^{-7}-x^{-6}\right)=-7 x^{-} 6+6 x^{-} 5$
(g) $\frac{d}{d x} x^{\pi}$

Solution: $\frac{d}{d x} x^{\pi}=\pi x^{\pi-1}$
2. Suppose the position of a particle at any time t is given by the following function

$$
s(t)=t^{2}+\frac{1}{t}
$$

Find the velocity of the particle at time $t=2$ seconds.

Solution: $v(t)=s^{\prime}(t)=2 t-t^{-2}$ and $v(2)=4-\frac{1}{4}=\frac{15}{4}$.
3. For $f(x)=m x+b$, find $f^{\prime}(x)$.

Solution: $f^{\prime}(x)=m$ the slope of the line
4. Find the equation of the line tangent to the curve $f(x)=x^{3}-6 x^{2}$ at its point of inflection.

Solution: $f^{\prime}(x)=3 x^{2}-12 x$ and $f^{\prime \prime}(x)=6 x-12$. So the possible inflection point is when $f^{\prime \prime}(x)=0$ as long as it chages sign. Which is does, so $x=2$ is the inflection point.
Then, $f^{\prime}(2)=-12$ and $f(2)=-16$ so the equation of the tangent line is $y+16=-12(x-2)$.

Exponential functions have the form

$$
f(x)=a^{x} .
$$

Because the base is a constant and the exponent is a variable, its derivative cannot be found using the General Power Rule. Instead, for $f(x)=a^{x}$ we have the following (For the proof of this see page 188 of your text).

$$
f^{\prime}(x)=a^{x} \cdot f^{\prime}(0)
$$

"the derivative of an exponential function is proportional to the function itself"
If we define

$$
\left.\frac{d}{d x} e^{x}\right|_{x=0}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

then when $f(x)=e^{x}$ we have $f^{\prime}(0)=1$. Therefore

$$
\frac{d}{d x} e^{x}=e^{x}
$$

5. Determine the derivatives of the following.
(a) $\frac{d}{d x}\left(3 e^{x}+x^{3}+3 x\right)$

Solution: $\frac{d}{d x}\left(3 e^{x}+x^{3}+3 x\right)=3 e^{x}+3 x^{2}+3$
(b) $\frac{d}{d x}\left(3 e^{x}+\pi\right)$

Solution: $\frac{d}{d x}\left(3 e^{x}+\pi\right)=3 e^{x}$
6. Find the equation of the line tangent to the curve $f(x)=e^{x}$ at $x=0$ and sketch both on the same axis.
Solution: $f^{\prime}(0)=1$ and $f(0)=1$. So, the equation of the tangent line is $y-1=1(x-0)$.

