Math 510

Derivatives of Polynomials & Exponential Functions
§3.1

This is how to calculate the derivative for many types of functions using formulas rather than the limit
definition. We’ll start off with the derivatives of a constant function, polynomials, power functions,
sums and differences, and finally exponential functions.

The derivative of a constant function f(x) = ¢ is
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The derivative of an arithmetic combination of functions can be found by putting together the deriva-
tives of the components using these rules:
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“the derivative of a constant times a function is the constant time the derivative of the function”
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“the derivative of a sum of a function is the sum of the derivatives”
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“the derivative of a difference of a function is the difference of the derivatives”

1. Determine the derivative of the following.
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2. Suppose the position of a particle at any time ¢ is given by the following function
1
s(t) =t 4 .

Find the velocity of the particle at time ¢ = 2seconds.

Solution: v(t) = &'(t) =2t —t~2 and v(2) =4 —
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3. For f(x) = mxz +b, find f'(z).

Solution: f/(x) = m the slope of the line

4. Find the equation of the line tangent to the curve f(z) = 23 — 622 at its point of inflection.

Solution: f/(r) = 322 — 12z andf”(x) = 6z — 12. So the possible inflection point is when
f"(z) = 0 as long as it chages sign. Which is does, so z = 2 is the inflection point.
Then, f'(2) = —12 and f(2) = —16 so the equation of the tangent line is y + 16 = —12(z — 2).




Exponential functions have the form
f(z) = a".

Because the base is a constant and the exponent is a variable, its derivative cannot be found using the
General Power Rule. Instead, for f(x) = a® we have the following (For the proof of this see page 188
of your text).

f'(@) =a”- f'(0)

“the derivative of an exponential function is proportional to the function itself”
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then when f(z) = e” we have f/(0) = 1. Therefore
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5. Determine the derivatives of the following.

(a) %(363; + 23 + 3z)

Solution: £ (3e” + 23 + 3z) = 3¢® + 322 + 3

(b) L (3¢ + )

Solution: -L (3¢ + 1) = 3¢”

6. Find the equation of the line tangent to the curve f(z) = e® at = 0 and sketch both on the same
axis.

Solution: f/(0) =1 and f(0) = 1. So, the equation of the tangent line is y — 1 = 1(x — 0).
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