Math 510

Derivatives as a Function 2

Like continuity, differentiability can be considered from the left or from the right. If a function is left differentiable at $x=a$ then the following limit exists.

$$
f_{-}^{\prime}(a)=\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a} \quad \text { or } \quad f_{-}^{\prime}(a)=\lim _{h \rightarrow 0^{-}} \frac{f(a+h)-f(a)}{h}
$$

If a function is right differentiable at $x=a$ then the following limit exists.

$$
f_{+}^{\prime}(a)=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a} \quad \text { or } \quad f_{+}^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}
$$

These are saying "What is the slope of the curve immediately to the left and right of a. ."

1. Use the graph of $f(x)=|x-4|$ on the left to answer the following questions.

(a) Sketch the graph of f^{\prime} on the axes to the right.

Solution:
(b) From the graph of f^{\prime}, determine the value of $f_{-}^{\prime}(4)$.

Solution: $f_{-}^{\prime}(4)=1$
(c) From the graph of f^{\prime}, determine the value of $f_{+}^{\prime}(4)$

Solution: $f_{+}^{\prime}(4)=-1$
(d) From the graph of f^{\prime}, determine the value of $f^{\prime}(4)$

Solution: undefined because the derivative from the left is not the same as the derivative from the right.
2. Consider the piecewise defined function

$$
f(x)= \begin{cases}3 x+2, & \text { if } x<1 \\ 6-x, & \text { if } x \geq 1\end{cases}
$$

(a) Determine $f_{-}^{\prime}(1)$ and $f_{+}^{\prime}(1)$

Solution: $f_{-}^{\prime}(1)=3$ and $f_{+}^{\prime}(1)=-1$
(b) Write down a formula for $f^{\prime}(x)$ as a piecewise defined function.

Solution: $f(x)= \begin{cases}3, & \text { if } x<1 \\ 0, & \text { if } x=0 \\ -1, & \text { if } x \geq 1\end{cases}$

There are three common ways for a function to fail to be differentiable at a point.

If f is differentiable at a point c, then f is also continuous at c. This means that if you draw a tangent line to a graph, then the graph must be unbroken at that point. The converse is false: continuity does not imply differentiability.
3. Use the graph below to answer the following questions either TRUE or FALSE.

(a) $f(x)$ is continuous 0 .
(e) $f(x)$ is continuous 3 .

Solution: True
Solution: True
(b) $f(x)$ is differentiable at 0 .
Solution: False
(f) $f(x)$ is differentiable at 3 .

Solution: True
(c) $f(x)$ is continuous 2 .

Solution: True
(g) $f(x)$ is continuous 4.

Solution: False
(d) $f(x)$ is differentiable at 2 .
(h) $f(x)$ is differentiable at 4 .

Solution: False

Solution: False
4. Identify the original function, first derivative, and second derivative.

original function:
first derivative:
second derivative:

Solution: original function: A first derivative: B second derivative:C

