Math 510

Derivative as a Function 1

By varying $x, f^{\prime}(x)$ defines a function called the derivative of f with respect to x :

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} . \tag{1}
\end{equation*}
$$

Using your TI-84, you can find both $f^{\prime}(a)$ and $f^{\prime}(x)$.

$$
f^{\prime}(a) \Leftrightarrow \operatorname{nDeriv}(\text { function, } \mathrm{x}, \mathrm{a}) \quad f^{\prime}(x) \Leftrightarrow \operatorname{nDeriv}(f u n c t i o n, \mathrm{x}, \mathrm{x})
$$

or

$$
\left.\left.f^{\prime}(a) \Leftrightarrow \frac{d}{d(x)}(\text { function })\right|_{x=a} \quad f^{\prime}(x) \Leftrightarrow \frac{d}{d(x)} \text { (function }\right)\left.\right|_{x=x}
$$

Push MATH and look under the MATH Menu for 8:nDeriv(.
The function f is differentiable on an interval if it is differentiable at every number in the interval (including the endpoints if necessary). All of these notations are used to refer to the derivative of f at x :

$$
f^{\prime}(x), \quad y^{\prime}, \quad \frac{d f}{d x}, \quad \frac{d y}{d x}, \quad \frac{d}{d x} f(x), \quad D f(x), \quad D_{x} f(x)
$$

1. Let $f(x)=\sqrt{5-x}$.
(a) Complete the following table.

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$f^{\prime}(x)$											

Solution:

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$f^{\prime}(x)$	-.1581	-.1667	-.1768	-.189	-.2041	-.2236	-.25	-.2887	-.3536	-.5	error?(Why)

(b) Determine the equation of the tangent line to f at $x=2$.

Solution: $y-\sqrt{3}=-.2887(x-2)$
(c) Complete the following table.

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$f^{\prime \prime}(x)$											

Solution:

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$f^{\prime \prime}(x)$	-.0079	-.0093	-.011	-.0135	-.017	-.0224	-.0313	-.0481	-.0884	-.25	error?(Why?)

(d) Sketch the graph of f, f^{\prime}, and $f^{\prime \prime}$ on the axes.

The graph of f^{\prime} may be determined from the graph of f by remembering that $f^{\prime}(x)$ is the slope of the tangent line at $(x, f(x))$:

- If c is the slope of the tangent line at $(x, f(x))$, the (x, c) is on the graph of $f^{\prime}(x)$.
- Conversely, if (x, c) is on the graph of f^{\prime}, then $f^{\prime}(x)=c$ and c is the slope of the tangent line to f at $(x, f(x))$.

2. The graph of f is sketched below. Sketch f^{\prime} on the axis to the right.

3. The graph of f is on the left. Sketch the graph of f^{\prime} on the axis below it. Use a sign chart from the tutorial to help.

