15.

The height h of the equilateral triangle with sides of length L is $\frac{\sqrt{3}}{2} L$, since $h^{2}+(L / 2)^{2}=L^{2} \quad \Rightarrow \quad h^{2}=L^{2}-\frac{1}{4} L^{2}=\frac{3}{4} L^{2} \quad \Rightarrow$ $h=\frac{\sqrt{3}}{2} L$. Using similar triangles, $\frac{\frac{\sqrt{3}}{2} L-y}{x}=\frac{\frac{\sqrt{3}}{2} L}{L / 2}=\sqrt{3} \Rightarrow$ $\sqrt{3} x=\frac{\sqrt{3}}{2} L-y \Rightarrow y=\frac{\sqrt{3}}{2} L-\sqrt{3} x \quad \Rightarrow \quad y=\frac{\sqrt{3}}{2}(L-2 x)$.

The area of the inscribed rectangle is $A(x)=(2 x) y=\sqrt{3} x(L-2 x)=\sqrt{3} L x-2 \sqrt{3} x^{2}$, where $0 \leq x \leq L / 2$. Now $0=A^{\prime}(x)=\sqrt{3} L-4 \sqrt{3} x \Rightarrow x=\sqrt{3} L /(4 \sqrt{3})=L / 4$. Since $A(0)=A(L / 2)=0$, the maximum occurs when $x=L / 4$, and $y=\frac{\sqrt{3}}{2} L-\frac{\sqrt{3}}{4} L=\frac{\sqrt{3}}{4} L$, so the dimensions are $L / 2$ and $\frac{\sqrt{3}}{4} L$.
16.

The rectangle has area $A(x)=2 x y=2 x\left(8-x^{2}\right)=16 x-2 x^{3}$, where $0 \leq x \leq 2 \sqrt{2}$. Now $A^{\prime}(x)=16-6 x^{2}=0 \Rightarrow x=2 \sqrt{\frac{2}{3}}$. Since $A(0)=A(2 \sqrt{2})=0$, there is a maximum when $x=2 \sqrt{\frac{2}{3}}$. Then $y=\frac{16}{3}$, so the rectangle has dimensions $4 \sqrt{\frac{2}{3}}$ and $\frac{16}{3}$.
22.

$L=8 \csc \theta+4 \sec \theta, 0<\theta<\frac{\pi}{2}$,
$\frac{d L}{d \theta}=-8 \csc \theta \cot \theta+4 \sec \theta \tan \theta=0$ when
$\sec \theta \tan \theta=2 \csc \theta \cot \theta \Leftrightarrow \tan ^{3} \theta=2 \Leftrightarrow \tan \theta=\sqrt[3]{2} \Leftrightarrow$
$\theta=\tan ^{-1} \sqrt[3]{2}$.
$d L / d \theta<0$ when $0<\theta<\tan ^{-1} \sqrt[3]{2}, d L / d \theta>0$ when
$\tan ^{-1} \sqrt[3]{2}<\theta<\frac{\pi}{2}$, so L has an absolute minimum when
$\theta=\tan ^{-1} \sqrt[3]{2}$, and the shortest ladder has length
$L=8 \frac{\sqrt{1+2^{2 / 3}}}{2^{1 / 3}}+4 \sqrt{1+2^{2 / 3}} \approx 16.65 \mathrm{ft}$.
Another method: Minimize $L^{2}=x^{2}+(4+y)^{2}$, where $\frac{x}{4+y}=\frac{8}{y}$.

