5. Let $u=g(x)=\sqrt{x}$ and $y=f(u)=e^{u}$. Then $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\left(e^{u}\right)\left(\frac{1}{2} x^{-1 / 2}\right)=e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}=\frac{e^{\sqrt{x}}}{2 \sqrt{x}}$.
6. $g(t)=\frac{1}{\left(t^{4}+1\right)^{3}}=\left(t^{4}+1\right)^{-3} \Rightarrow g^{\prime}(t)=-3\left(t^{4}+1\right)^{-4}\left(4 t^{3}\right)=-12 t^{3}\left(t^{4}+1\right)^{-4}=\frac{-12 t^{3}}{\left(t^{4}+1\right)^{4}}$
7. $y=\cos \left(a^{3}+x^{3}\right) \Rightarrow y^{\prime}=-\sin \left(a^{3}+x^{3}\right) \cdot 3 x^{2} \quad\left[a^{3}\right.$ is just a constant $]=-3 x^{2} \sin \left(a^{3}+x^{3}\right)$
8. $y=a^{3}+\cos ^{3} x \Rightarrow y^{\prime}=3(\cos x)^{2}(-\sin x) \quad\left[a^{3}\right.$ is just a constant $]=-3 \sin x \cos ^{2} x$
9. (a) $f(x)=x \sqrt{2-x^{2}}=x\left(2-x^{2}\right)^{1 / 2} \Rightarrow$

$$
f^{\prime}(x)=x \cdot \frac{1}{2}\left(2-x^{2}\right)^{-1 / 2}(-2 x)+\left(2-x^{2}\right)^{1 / 2} \cdot 1=\left(2-x^{2}\right)^{-1 / 2}\left[-x^{2}+\left(2-x^{2}\right)\right]=\frac{2-2 x^{2}}{\sqrt{2-x^{2}}}
$$

(b)

$f^{\prime}=0$ when f has a horizontal tangent line, f^{\prime} is negative when f is decreasing, and f^{\prime} is positive when f is increasing.
43. (a) $h(x)=f(g(x)) \Rightarrow h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$, so $h^{\prime}(1)=f^{\prime}(g(1)) \cdot g^{\prime}(1)=f^{\prime}(2) \cdot 6=5 \cdot 6=30$.
(b) $H(x)=g(f(x)) \quad \Rightarrow \quad H^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$, so $H^{\prime}(1)=g^{\prime}(f(1)) \cdot f^{\prime}(1)=g^{\prime}(3) \cdot 4=9 \cdot 4=36$.

