4. Absolute maximum at e; absolute minimum at t; local maxima at c, e, and s; local minima at b, c, d, and r; neither a maximum nor a minimum at a.
5. Absolute maximum value is $f(7)=5$; absolute minimum value is $f(1)=0$; local maximum values are $f(0)=2, f(3)=4$, and $f(5)=3$; local minimum values are $f(1)=0, f(4)=2$, and $f(6)=1$.
6. Absolute minimum at 1 , absolute maximum at 5 ,
local maximum at 2 , local minimum at 4

7. (a)

(b)

(c)

8. $f(x)=x^{3}+x^{2}+x \quad \Rightarrow \quad f^{\prime}(x)=3 x^{2}+2 x+1 . \quad f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}+2 x+1=0 \quad \Rightarrow \quad x=\frac{-2 \pm \sqrt{4-12}}{6}$.

Neither of these is a real number. Thus, there are no critical numbers.
39. $f(x)=2 x^{3}-3 x^{2}-12 x+1, \quad[-2,3] . \quad f^{\prime}(x)=6 x^{2}-6 x-12=6\left(x^{2}-x-2\right)=6(x-2)(x+1)=0 \Leftrightarrow$ $x=2,-1 . \quad f(-2)=-3, f(-1)=8, f(2)=-19$, and $f(3)=-8$. So $f(-1)=8$ is the absolute maximum value and $f(2)=-19$ is the absolute minimum value.
51. (a)

From the graph, it appears that the absolute maximum value is about $f(-0.77)=2.19$, and the absolute minimum value is about $f(0.77)=1.81$.
(b) $f(x)=x^{5}-x^{3}+2 \Rightarrow f^{\prime}(x)=5 x^{4}-3 x^{2}=x^{2}\left(5 x^{2}-3\right)$. So $f^{\prime}(x)=0 \quad \Rightarrow \quad x=0, \pm \sqrt{\frac{3}{5}}$.
$f\left(-\sqrt{\frac{3}{5}}\right)=\left(-\sqrt{\frac{3}{5}}\right)^{5}-\left(-\sqrt{\frac{3}{5}}\right)^{3}+2=-\left(\frac{3}{5}\right)^{2} \sqrt{\frac{3}{5}}+\frac{3}{5} \sqrt{\frac{3}{5}}+2=\left(\frac{3}{5}-\frac{9}{25}\right) \sqrt{\frac{3}{5}}+2=\frac{6}{25} \sqrt{\frac{3}{5}}+2$ (maximum) and similarly, $f\left(\sqrt{\frac{3}{5}}\right)=-\frac{6}{25} \sqrt{\frac{3}{5}}+2$ (minimum).

